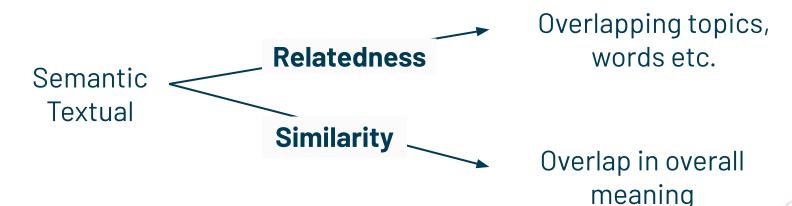
UAlberta at SemEval-2024 Task 1: A Potpourri of Methods for Quantifying Multilingual Semantic Textual Relatedness and Similarity

Ning Shi, Senyu Li, Guoqing Luo, Amirreza Mirzaei, Ali Rafiei, Jai Riley, Hadi Sheikhi, Mahvash Siavashpour, Mohammad Tavakoli, Bradley Hauer, Grzegorz Kondrak


Department of Computing Science University of Alberta, Edmonton, Canada

Semantic Textual Relatedness (STR) and Similarity (STS)

STR is a broad term for measuring the **degree of commonality** between pairs of sentences.

STS measures the degree in which pairs of sentences are **close in meaning**.

Semantic Textual Relatedness (STR) and Similarity (STS)

When I tried again, I was able to juggle.

When I went back to it, I was able to juggle!

High relatedness High similarity

Old car driving down the road.

Two old women enjoying at a gathering.

Low relatedness Low similarity

Hypothesis 1

Similarity is a special case of relatedness.

For example*:

And in the United States, **we're considered** Mexican.

And in the United States, **we are considering** Mexicans.

High relatedness but low similarity.

Related

Similar

Hypothesis 2

Relatedness and similarity are preserved under translation.

 It is better known as a walk.
 0.88

 It is better known as a walk.
 0.88

 También se le conoce como paseo.
 0.88

 Spanish

 It is better known as a walk.
 0.88

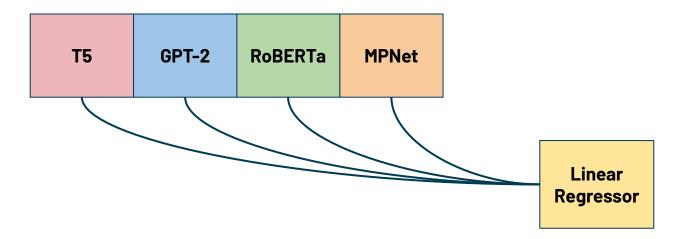
 Dit staan ook bekend as 'n stap.
 Afrikaans

Methods

Explicit Semantic	Extrinsic	Distributional	Large Language Models
Create and compare semantic representations of each inputted sentence	Use the output of systems designed for other semantic tasks	Create and compare embeddings from PLMs	Prompting or combining multiple model outputs

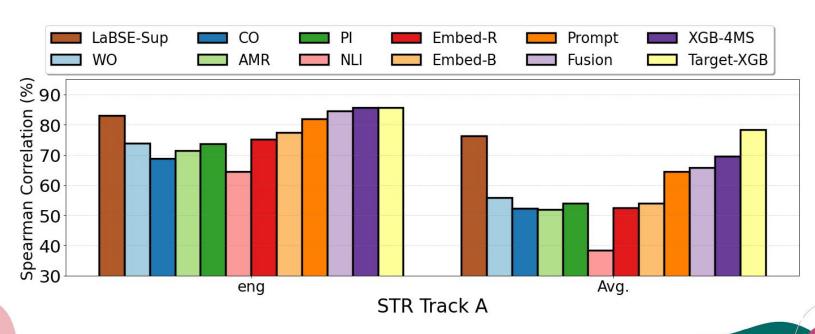
Methods

Explicit Semantic	Extrinsic	Distributional	Large Language Models
Word Overlap (WO) Concept Overlap (CO) Abstract Meaning Representation (AMR)	Paraphrase Identification (PI) Natural Language Inference (NLI)	Embed-B Embed-R	Prompt Fusion Fine-tune

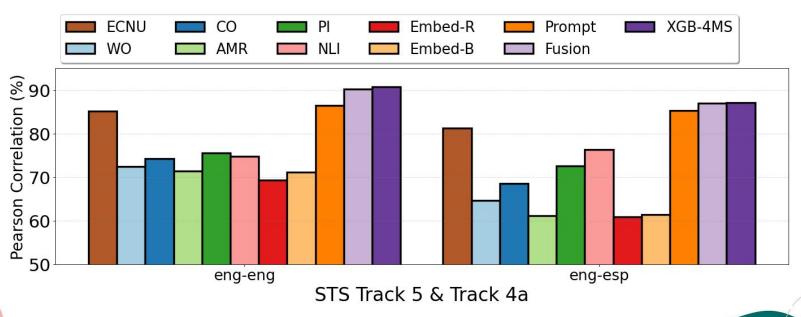

Methods

Explicit Semantic	Extrinsic	Distributional	Large Language Models
WO: Python Libraries CO: AMuSE-WSD AMR: Sapienza API	PI: RoBERTa & fine-tuned classifier NLI: RoBERTa with NLI Classifier	Embed-B: BERT Embed-R: RoBERTA	Prompt: ChatGPT Fusion: Open-source LLMs Fine-tune: T5, GPT2, RoBERTa, MPNet

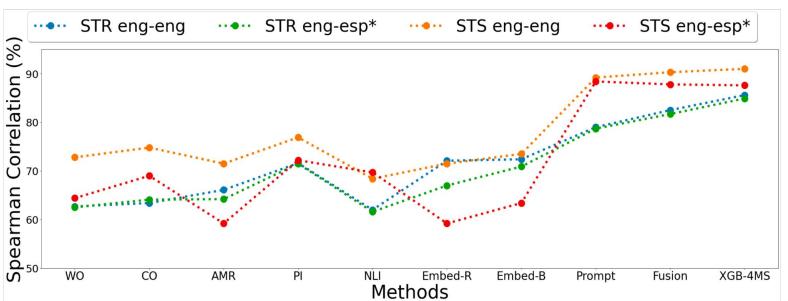
Ensemble


Our **best results** are reported from a **regression ensemble system** involving the **4 fine-tuned models**.

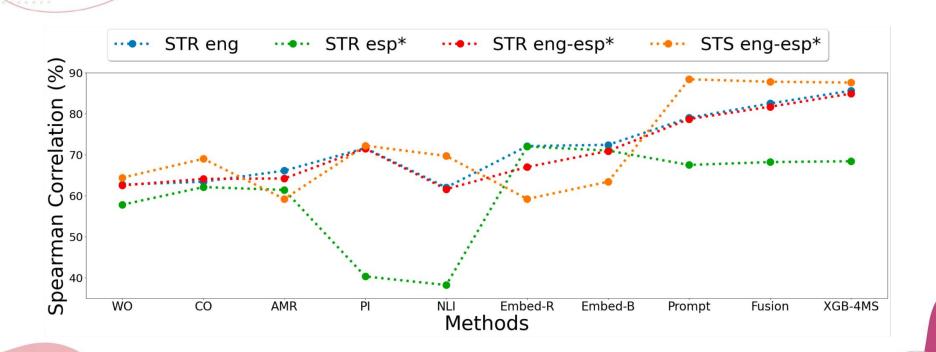
Treat each score as a feature in a linear regressor.


STR Results

Achieved SOTA results for English.


STS Results

STS dataset from SemEval 2017 Task 1 with ECNU being the best recorded method.



STR vs STS Results

High correlation between performance of methods on STR and STS datasets.

Mono-Lingual vs Cross-Lingual

Conclusions

- Achieved SOTA results for English and top 3 performance for 16 of the language/track settings.
- Provided evidence for two hypotheses:
 - 1. Semantic similarity is a special case of semantic relatedness.
 - 2. Both similarity and relatedness are **preserved under translation.**

github.com/UAlberta-NLP/SemEval2024-STR

