
Text Editing as Imitation Game
Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, Zhouhan Lin

Text Editing
• Text simplification (e.g., dyslexia friendly)
• Grammatical error correction (e.g., Grammarly)
• Post processing (e.g., MT)
• Punctuation restoration (e.g., ASR)
• To name a few

Source Text (x)
1 1 2

Target Text (y)
1 + 1 = 2

Introduction

From End to End (End2end)
• Simplicity
• Good results
• Not much effort

But
• Copy mechanism
• Translate overlap

Source Text (x)
1 1 2 <pad>

Target Text (y)
<s> 1 + 1 = 2 </s>

Introduction

Sequence Tagging
(Token-level Action Generation)
• Tag <keep> for overlap

But
• Action bounded by token

Source Text (x)
1 1 2

Target Tag (y’)
<insert_+> <insert_=> <keep>

Introduction

Imitation Learning (IL) & Recurrent Inference
(Sequence-level Action Generation)
• Dynamic encoder context matrix
• Complex task decomposed into easier sub-tasks
• Highest degrees of flexibility at sequence-level

Imitation Game

Imitation Game

Three approaches – sequence tagging (left), end-to-end (middle), sequence
generation (right).

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
Source text x as initial state 𝑠! (e.g., 1 1 2)
Target text 𝑦 as target state 𝑠" (e.g., 1 + 1 = 2)
Every edited texts as intermediate states 𝑠# (e.g., 1 + 1 2)
Thus, the path 𝑋 ↦ 𝑌 can be a set of sequential states 𝑠$"

Imitation Game

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences

Edit metric 𝑬 (e.g., Levenshtein distance)
As long as 𝑋 ↦ 𝑌 given 𝐴𝑬
Examples: [INSERT, POS_3, =]

INSERT -> operation token
POS_3 -> position token

Imitation Game

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
Due to the nature of text editing, we know it is always 1, meaning
always happen.

Imitation Game

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
The game environment is episodic and allows control of the
editing process.

Imitation Game

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
• Reward function 𝑅 – to calculate a reward for each action
In this work, we focus on behavior cloning (BC), so the reward
function can be omitted for now.

Imitation Game

Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
• Reward function 𝑅 – to calculate a reward for each action
The formulation turns out to be a simplified𝑀'(= (𝑆, 𝐴, ℰ)

Imitation Game

Imitation Game

An example of the imitation game to complete ”1 1 2” as “1 + 1 = 2”.

Trajectory Generation (TG)
How to convert conventional
sequence-to-sequence data into
state-to-action demonstrations?

Dynamic programming (DP) to back
trace the minimum edit distance
given the edit metric.

Imitation Game

Trajectory Augmentation (TA)
IL suffers from distribution shift and
error accumulation.

TA to expand the expert
demonstrations and actively expose
shifted states utilizing the divide-
and-conquer technique.

Imitation Game

Trajectory Augmentation (TA)
Advantages:
• To preserve the i.i.d. assumption
• No dependency on the task
• No domain knowledge
• No labeling work
• No further evaluation

Imitation Game

Non-Autoregressive Decoding

The conventional autoregressive decoder (a) compared with the proposed
non-autoregressive D2 (b) in which the linear layer aligns the sequence length
dimension for the subsequent parallel decoding.

Arithmetic Equation (AE)

AE benchmarks: Arithmetic Operators Restoration (AOR), Arithmetic
Equation Simplification (AES), and Arithmetic Equation Correction (AEC)

Models
• End2end – translate 𝑥 to 𝑦 from end to end
• Tagging – token level action
• Recurrence – recurrent inference via autoregressive LSTM
• Recurrence* - rerun the source code of Recurrence that only

has access to the fixed training set
• AR – our reproduction of Recurrence* in our pipeline
• AR* - increase the encoder layers in AR from 1 to 4
• NAR – replace autoregressive decoder of AR* with a linear

layer to enable non-autoregressive decoding
• NAR* - our method with D2 non-autoregressive decoder
• +TA – enable trajectory augmentation

Experimental Results

Experimental Results

Action Design
Due to the liberty of sequence
generation, the same operation can
be represented as different action
sequences by, for example, a simple
swap of action tokens.

Our NAR* stays nearly consistent
across three designs.

Analysis

Trajectory Optimization
A better edit metric 𝑬 often means a
smaller action vocabulary space,
shorter trajectory length, and,
therefore, an easier IL.

An appropriate edit metric 𝑬
depends on the specific task.

Analysis

Analysis
Dual Decoders
As an ablation study, we freeze the encoder of NAR* and vary its
decoder to reveal the contributions of each component in D2.
• Linear – replace the decoder with a linear layer
• Decoder0 – remove the second decoder from D2
• Shared D2 – share the parameters between two decoders in D2
• D2 (NAR*) – our method with D2 non-autoregressive decoder
• +TA – enable trajectory augmentation

Analysis
Dual Decoders
As an ablation study, we freeze the encoder of NAR* and vary its
decoder to reveal the contributions of each component in D2.

Conclusion

Contributions:
• Frame text editing into an imitation game
This allows the highest degree of flexibility to design actions at
the sequence-level, which are arguably more controllable,
interpretable, and similar to human behavior.

Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
Free to translate the conventional input-output data to state-
action demonstrations for a friendly IL.

Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
To boost the learning in terms of accuracy, efficiency, and
robustness

Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
• We propose TA technique
To mitigate the distribution shift problem IL often suffers

Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
• We propose TA technique

Future work:
• Reward function, action design, trajectory optimization

Conclusion

Limitations
• Efficiency issue due to multiple calls of encoder (e.g., a heavy

pretrained language model)
• Application in more realistic editing tasks (e.g., text simplification)

TLDR
Turning tasks into games that agents feel more comfortable with
sheds light on future studies in the direction of reinforcement
learning in the application of text editing.

Thanks

