

# Paraphrase Identification via Textual Inference

Ning Shi, Bradley Hauer, Jai Riley, Greg Kondrak

Alberta Machine Intelligence Institute (Amii) Department of Computing Science University of Alberta, Edmonton, Canada



#### Natural Language Inference

Natural Language Inference (NLI) involves three labels that describe the relationship between two sentences. Entailment, Contradiction, Neutral

For example:

 $S_1$ : "This man is <u>surfing</u>."  $S_2$ : "A man is <u>on water</u>." Surfing: an aquatic activity or website browsing?





#### Paraphrase Identification

**P**araphrase **I**dentification (PI) is the task of deciding whether two sentences convey the same meaning.

Hypothesis:

Paraphrasing corresponds to bidirectional textual entailment.

Prior work:

- A blend of modules complicates the analysis
- Bias to traditional PI methods
- Lacks any theoretical formalization



#### **Our Contributions**

We present the **first theoretical formalization** implying a **practical reduction of PI to NLI** (PI2NLI), validated by fine-tuning an NLI model for PI.

- A theoretical task reduction showing how PI can be reduced to NLI.
- Extensive evaluation across zero-shot and fine-tuning.
- We found fine-tuned NLI models can **outperform** dedicated PI models on PI datasets.

A **P-to-Q** reduction solves an instance of a problem **P** by combining the solutions of one or more instances of **Q**.





#### **Equivalence and Paraphrasing**

Semantic Equivalence relation, SEQ(S<sub>1</sub>, S<sub>2</sub>) := "the sentences S<sub>1</sub> and S<sub>2</sub> convey the same meaning"

Paraphrase Relation, PR(C, S<sub>1</sub>, S<sub>2</sub>) := "the sentences S<sub>1</sub> and S<sub>2</sub> convey the same meaning given the context C"

The relationship in between:  $SEQ(S_1, S_2) \Leftrightarrow \forall C : PR(C, S_1, S_2)$ 

Example:

S<sub>1</sub>: "We must work hard to win this election."

S<sub>2</sub>: "The Democrats must work hard to win this election."

#### **Entailment and Inference**

Textual Entailment, TE(S<sub>1</sub>, S<sub>2</sub>) := "the sentence S<sub>2</sub> can be inferred from the sentence S<sub>1</sub>"

Textual Inference, TI(C,  $S_1$ ,  $S_2$ ) := "the sentence  $S_2$  can be inferred from the sentence  $S_1$  given the context C"

The relationship in between:

 $\mathsf{TE}(\mathsf{S}_1,\mathsf{S}_2) \Leftrightarrow \forall \mathsf{C}:\mathsf{TI}(\mathsf{C},\mathsf{S}_1,\mathsf{S}_2)$ 

Example:

 $S_1$ : "This man is <u>surfing</u>."  $S_2$ : "A man is <u>on water</u>."

# Proposition

Given context C, sentences  $S_1$  and  $S_2$  are paraphrases if and only if they can be mutually inferred from each other.

Formally:

### $\mathsf{PR}(\mathsf{C},\mathsf{S}_1,\mathsf{S}_2) \Leftrightarrow \mathsf{TI}(\mathsf{C},\mathsf{S}_1,\mathsf{S}_2) \land \mathsf{TI}(\mathsf{C},\mathsf{S}_2,\mathsf{S}_1)$

Context:

- Context includes common sense and world knowledge.
- In practice, context is embedded in the data distribution.

#### **Data Adaptation**

**Positive** Pl instances:

We convert each positive PI instance into two distinct NLI positive instances, one in each direction.

 $PI(S_1, S_2, True) \rightarrow NLI(S_1, S_2, Entailment) AND NLI(S_2, S_1, Entailment)$ 

#### **Negative** Pl instances:

We generate a negative NLI instance (randomly selected as either contradiction or neutral) in one randomly selected direction.

**OR** NLI(S<sub>2</sub>, S<sub>1</sub>, Contradiction) **OR** NLI(S<sub>2</sub>, S<sub>1</sub>, Neutral)





XLNet\_large (Yang et al., 2019); RoBERTa\_large (Liu et al., 2019)

PAWS QQP and PAWS Wiki include **adversarial** example created by word scrambling and back-translation.



XLNet\_pi, RoBERTa\_pi (Nie et al., 2020) The **same** language models with classification heads initialized from **scratch**.

#### **Analysis - Context**

A paraphrase identified in one dataset might **NOT** necessarily be considered a valid paraphrase in the other.

We view this **adjustment** as the process of how models learn the **context** inherent in each PI dataset.



# Conclusion

We have presented PI2NLI, the first attempt to reduce PI to NLI.

- Pl can be reduced to NLI **theoretically** and **empirically**.
- Fine-tuned NLI models can **outperform** PI models on PI datasets.
- Applying PI2NLI in a zero-shot setting show the limitations in the current PI datasets.

#### Future:

- Using NLI to refine PI data?
- Using PI models to solve NLI?
- Using one single model to solve both PI and NLI?

#### github.com/ShiningLab/PI2NLI

