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Lexical Substitution Task (LST)

LST is to identify suitable replacements for a target word while 
preserving the contextual meaning of the sentence.

LST(S, wx) = y, for example:
Sentence (S) = ”Let me begin again.”
Target Word (wx) = “begin”
Substitutes (y) = [“start”, “commence”, “open”, …]
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Limitations of Prior Work

● Predicted substitutes may align with the context BUT change the original 
meaning of the sentence. Consider Masked Language Modeling (MLM):

Input S0: “Let me begin again.” “Let me [MASK] again.”

Output S1: “Let me start again.” Output S2: “Let me originate again.”
WordNet: (Verb) take the first step WordNet: (Verb) bring into being.
or steps in carrying out an action.

● Pipeline approaches, depending on defined heuristics, tuned thresholds, 
extensive post-processing steps, and external resources.

● A GAP between pre-training (language modeling) and fine-tuning (LST).

MLM

VS

WordNet 3.1 & Open English WordNet. 2



Our Contributions

We provide the first single-step, end-to-end generative solution for LST 
that can also address existing limitations.

● An innovative and successful attempt to apply Causal Language 
Modeling  (CLM) to LST through a formally defined task reduction. 

● A new overall state-of-the-art result. 

● Scalability via data resources, model capacity, and retrieval-augmented 
generation (RAG).
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Task Definition

Lexical Substitution, LexSub(S, wx, wy) := “the word wx can be replaced by 
the word wy in the sentence S without altering its meaning”

LexSub(”Let me begin again.”, “begin”, “start”) = TRUE

Word Prediction, WP(S, w) := “the word w has the same meaning as the 
masked word in the sentence S”

WP(“Let me [begin] again.”, “start”) = TRUE
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Task Reduction
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A P-to-Q reduction solves an instance of a problem P by combining the 
solutions of one or more instances of Q.

A mutual reductions of two problems to one another demonstrate their 
equivalence.

Task Reduction from LexSub to WP:

LexSub(S, wx, wy) ⇔ WP(S, wx) ∧ WP(S, wy)

(Hauer and Kondrak, 2023)



Method – PromptSub
Lexical Substitution via Prompt-aware Fine-tuning

InfoPrompt incorporate three additional attributes of the target word: 
● Lemma form (Target)
● Part of Speech tag (PoS)
● Position in the Context (Position)

Exclusively from the task data thus NO reliance on external resources.
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Method – PromptSub
Lexical Substitution via Prompt-aware Fine-tuning

FreqSub exploits the frequency information associated with 
each gold substitute.

Frequency -> Softmax -> Probability Distribution -> Sampling
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Method – PromptSub
Lexical Substitution via Prompt-aware Fine-tuning

8



Results – LS07

PromptSub+ augments the training set by incorporating the dev set.
GeneSis+WN relies on external resources from WordNet.

LS07 (Lacerra et al., 2021)
Train: CoInCo and TWSI; Test: Semeval-2007 Task 10 9



PromptSub and PromptSub+ take GPT-2 Medium as its backbone.
GeneSis+Rerank incorporates post-processing to refine its results.

Results – LS21

LS21 (Lee et al., 2021)
Train: SWORDS Train, LST and TWSI; Test: SWORDS Test 10



Scalability

ExPrompt retrieves WordNet synsets for RAG, resulting in lower loss, 
improved P@1, and earlier convergence.
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Conclusion

We have presented PromptSub, a framework reducing LST to CLM.
• Bridges the gap between pre-training and fine-tuning.
• Takes advantage of greater model capacity.
• Leverages a broad array of resources.
• Benefits from external knowledge through RAG.
• Establishes a new overall state of the art, particularly LS21.
We expect to extend our approach to other semantic tasks in the future.

github.com/ShiningLab/PromptSub 12
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