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Knowledge Fusion

RoChBert: Towards Robust BERT Fine-tuning for Chinese
Zihan Zhang, Jinfeng Li, Ning Shi, Bo Yuan, Xiangyu Liu, Rong Zhang, 

Hui Xue, Donghong Sun, and Chao Zhang
Findings of EMNLP 2022



Knowledge
• Conscience
• Sum of our memories
• All the knowledge
• Natural language processing (NLP)
semantics, syntax, imagination, association, etc.
e.g., What a beautiful day.

Introduction



Adversarial texts
• Discrete
• Small perturbation significant change
• Small change significant perturbation
Typoglycemia
• More than what we can see

Introduction

Aoccdrnig to a rscheearch at 
Cmabrigde Uinervtisy, it deosn‘t
mttaer in waht oredr the ltteers
in a wrod are, the olny iprmoetnt
tihng is taht the frist and lsat
ltteer be at the rghit pclae.

Davis, Matt (2012)



Adversarial texts in Chinese
• Chinese characters or 漢字 (hànzì)
• Pronunciation (homophones)

English: I’ll bury the berry.
Chinese: gambling -博彩 (bó cǎi) v.s.菠菜 (bō cài)

• Glyph (homoglyph)
English: internationalbank.c0m - i, I v.s., l, L; o, O v.s., 0
Chinese: WeChat -微信 (wēi xìn) v.s.薇信 (wēi xìn)

Introduction



Knowledge fusion for model robustness
• Adversarial graph
• Multimodal fusion
• Data augmentation by curriculum learning

Method



Adversarial Graph

Knowledge representation
• Adversarial graph involving stroke code

StoneSkipping (Jiang et al., 2019)
AdvGraph (Li et al., 2021)

• Node -> Chinese character
• Edge -> phonetic or glyph relationship
• 3,000 -> 7,707 nodes
• 109,706 edges



Multimodal Fusion

Knowledge fusion
• Knowledge as a second modal
• Graph embedding (e.g., node2vec)
• Word embedding (e.g., BERT)
• Concatenation and fusion (e.g., self-attention)



Data Augmentation

Curriculum learning
• Adversarial texts
• Not only adversarial examples

samples mislead the target model
• But also intermediate texts

samples lead to a confidence decline



Method



Experiments

Data
Sentiment analysis, text classification, and natural language inference
• ChnSentiCorp

github.com/pengming617/bert_classification/tree/master/data
• DMSC

https://www.kaggle.com/utmhikari/doubanmovieshortcomments
• THUCNews (Sun et al., 2016)
• OCNLI

https://github.com/cluebenchmark/OCNLI



Experiments

Baselines
• ChineseBERT (Sun et al., 2021)
• Chinese spelling corrector (SC)

https://github.com/shibing624/pycorrector
Evaluation
• Accuracy
• Modification rate (MR)
• Unlimited attack success rate (UASR)
• Limited attack success rate (LASR)



Experiments



Experiments



Experiments
Observation
• Robustness in adaptive settings (figure)
• Ablation study (table)



Experiments

Representation Visualization
(a) Benign texts BERTbase

(b) Adversarial texts BERTbase

(c) Adversarial texts ChineseBERT
(d) Adversarial texts RoChBert



TLDR

Conclusion
• RoChBert - a plug-in for the robustness of Chinese language model
• Incorporating human knowledge (e.g., adversarial graph)
• Knowledge representation -> knowledge fusion
• Knowledge can be helpful in many NLP tasks
e.g., Incorporating External POS Tagger for Punctuation Restoration
(Shi et al., 2021)



Q&A



Meaningful Learning

Revisit Systematic Generalization via Meaningful Learning
Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, and Zhouhan Lin

the Fifth BlackboxNLP at EMNLP 2022



Systematic Generalization
• Talent of human
• How about neural networks?
• Pessimistic view
• Optimistic results

Introduction

walk twice -> WALK WALK
jump -> JUMP

jump twice -> ?



Introduction



Question by Lake and Baroni (2018) on page 8:
What are, precisely, the generalization mechanisms that subtend the 
networks’ success in these experiments?

Introduction



In educational psychology, meaningful learning refers to learning new 
concepts by relating them to old ones (Ausubel, 1963).

On the contrary, rote learning stands for learning new concepts without 
the consideration of relationships.

Meaningful Learning



Meaningful Learning



Inductive Learning

Inductive learning is a bottom-up approach from the more specific to 
the more general. 

In grammar teaching, inductive learning is a rule discovery approach 
starting with the presentation of specific examples from which a 
general rule can be inferred.



Deductive Learning

Deductive Learning, the opposite of inductive learning, is a top-down
approach from the more general to the more specific.

As a rule-driven approach, teaching in a deductive manner often begins 
with presenting a general rule followed by specific examples in practice 
where the rule is applied.



Meaningful Learning



Semantic Links



Experimental Setup

Data
• SCAN (Lake and Baroni, 2018)
• GEO from Geography - https://github.com/jkkummerfeld/text2sql-data
• ADV from Advising - https://github.com/jkkummerfeld/text2sql-data
Seq2seq models
• RNN - bi-directional recurrent networks with LSTM units
• CNN - convolutional seq2seq structure (Gehring et al., 2017)
• TFM – Transformer (Vaswani et al., 2017)



Experimental Setup



Experimental Setup

Evaluation
• Token accuracy (Token Acc.)
• Sequence accuracy (Seq. Acc.)



Experiment#1

1. We augment the original training set with variants samples and rules
as more as possible.

2. We decrease the number of augmented samples for each variant 
until the one-shot learning setting.

3. We train the same model on these various datasets to format a 
gradual transition from baselines to the one-shot learning.



Experiment#1



Experiment#1



Experiment#1



Experiment#2

• Standard: models are trained on prior knowledge and one variant 
sample per variant (i.e., the same one-shot setting).

• Difficult: We remove from the prior knowledge primitive samples 
sharing the same context with their variant samples.

(e.g., we remove “jump twice” due to “jump_0 twice”)
• Challenging: We also exclude from the prior knowledge primitive 

samples of the same length as their variant samples.
(e.g., we remove “jump twice”, “jump right”, “jump left”)



Experiment#2



Experiment#3

• Standard: models are trained on the prior knowledge, primitive rules, 
and variant rules.

• Difficult: We remove primitive rules from the training set. 
Consequently, semantic links are weakened and depend on variant 
rules only.



Experiment#3



Experiment#3



Experiments

• Experiments over RNN on SCAN with vary- ing #primitives (a) and 
#variants (b).



Proof of Concept



Proof of Concept



TLDR

Conclusion
• We revisit systematic generalization from a meaningful learning 

perspective by either inductive or deductive semantic linking.
• Modern seq2seq models can generalize to new concepts and 

compositions after semantic linking, which empirically answers the 
question by Lake and Baroni (2018).

• Both semantic linking and prior knowledge play a key role, in line 
with meaningful learning theory.

• Meaningful learning already benefits models in solving realistic 
problems



Q&A



Imitation Learning

Text Editing as Imitation Game
Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, and Zhouhan Lin

Findings of EMNLP 2022



Text Editing
• Text simplification (e.g., dyslexia friendly)
• Grammatical error correction (e.g., Grammarly)
• Post processing (e.g., MT)
• Punctuation restoration (e.g., ASR)
• To name a few

Source Text (x)
1 1 2

Target Text (y)
1 + 1 = 2

Introduction



From End to End (End2end)
• Simplicity
• Good results
• Not much effort

But
• Copy mechanism
• Translate overlap

Source Text (x)
1 1 2 <pad>

Target Text (y)
<s> 1 + 1 = 2 </s>

Introduction



Sequence Tagging
(Token-level Action Generation)
• Tag <keep> for overlap

But
• Action bounded by token

Source Text (x)
1 1 2

Target Tag (y’)
<insert_+> <insert_=> <keep>

Introduction



Imitation Learning (IL) & Recurrent Inference
(Sequence-level Action Generation)
• Dynamic encoder context matrix
• Complex task decomposed into easier sub-tasks
• Highest degrees of action flexibility at sequence-level

Imitation Game



Imitation Game

Three approaches – sequence tagging (left), end-to-end (middle), sequence 
generation (right).



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
Source text x as initial state 𝑠! (e.g., 1 1 2)
Target text 𝑦 as target state 𝑠" (e.g., 1 + 1 = 2)
Every edited texts as intermediate states 𝑠# (e.g., 1 + 1 2)
Thus, the path 𝑋 ↦ 𝑌 can be a set of sequential states 𝑠$"

Imitation Game



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences

Edit metric 𝑬 (e.g., Levenshtein distance)
As long as 𝑋 ↦ 𝑌 given 𝐴𝑬
Examples: [INSERT, POS_3, =]

INSERT -> operation token
POS_3 -> position token

Imitation Game



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
Due to the nature of text editing, we know it is always 1, meaning 
always happen.

Imitation Game



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
The game environment is episodic and allows control of the
editing process.

Imitation Game



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
• Reward function 𝑅 – to calculate a reward for each action
In this work, we focus on behavior cloning (BC), so the reward
function can be omitted for now.

Imitation Game



Markov Decision Process (MDP) Definition
• State 𝑆 – a set of text sequences
• Action 𝐴 – a set of action sequences
• Transition matrix 𝑃 – the probability that 𝑎# leads 𝑠# to 𝑠#&!
• Environment ℰ - to update state by 𝑠#&! = ℰ(𝑠#, 𝑎#)
• Reward function 𝑅 – to calculate a reward for each action
The formulation turns out to be a simplified𝑀'( = (𝑆, 𝐴, ℰ)

Imitation Game



Imitation Game

An example of the imitation game to complete ”1 1 2” as “1 + 1 = 2”.



Trajectory Generation (TG)
How to convert conventional
sequence-to-sequence data into
state-to-action demonstrations?

Dynamic programming (DP) to back
trace the minimum edit distance 
given the edit metric.

Imitation Game



Trajectory Augmentation (TA)
IL suffers from distribution shift and 
error accumulation.

TA to expand the expert
demonstrations and actively expose
shifted states utilizing the divide-
and-conquer technique.

Imitation Game



Trajectory Augmentation (TA)
Advantages:
• To preserve the i.i.d. assumption
• No dependency on the task
• No domain knowledge
• No labeling work
• No further evaluation

Imitation Game



Non-Autoregressive Decoding

The conventional autoregressive decoder (a) compared with the proposed 
non-autoregressive D2 (b) in which the linear layer aligns the sequence length 
dimension for the subsequent parallel decoding.



Arithmetic Equation (AE)

AE benchmarks: Arithmetic Operators Restoration (AOR), Arithmetic 
Equation Simplification (AES), and Arithmetic Equation Correction (AEC)



Models
• End2end – translate 𝑥 to 𝑦 from end to end
• Tagging – token level action
• Recurrence – recurrent inference via autoregressive LSTM
• Recurrence* - rerun the source code of Recurrence that only

has access to the fixed training set
• AR – our reproduction of Recurrence* in our pipeline
• AR* - increase the encoder layers in AR from 1 to 4
• NAR – replace autoregressive decoder of AR* with a linear

layer to enable non-autoregressive decoding
• NAR* - our method with D2 non-autoregressive decoder
• +TA – enable trajectory augmentation



Experimental Results
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Action Design
Due to the liberty of sequence 
generation, the same operation can 
be represented as different action 
sequences by, for example, a simple
swap of action tokens.

Our NAR* stays nearly consistent
across three designs.

Analysis



Trajectory Optimization
A better edit metric 𝑬 often means a
smaller action vocabulary space,
shorter trajectory length, and,
therefore, an easier IL.

An appropriate edit metric 𝑬
depends on the specific task.

Analysis



Analysis
Dual Decoders
As an ablation study, we freeze the encoder of NAR* and vary its 
decoder to reveal the contributions of each component in D2.
• Linear – replace the decoder with a linear layer
• Decoder0 – remove the second decoder from D2
• Shared D2 – share the parameters between two decoders in D2
• D2 (NAR*) – our method with D2 non-autoregressive decoder
• +TA – enable trajectory augmentation



Analysis
Dual Decoders
As an ablation study, we freeze the encoder of NAR* and vary its 
decoder to reveal the contributions of each component in D2.



Conclusion

Contributions:
• Frame text editing into an imitation game
This allows the highest degree of flexibility to design actions at
the sequence-level, which are arguably more controllable,
interpretable, and similar to human behavior.



Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
Free to translate the conventional input-output data to state-
action demonstrations for a friendly IL.



Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
To boost the learning in terms of accuracy, efficiency, and
robustness



Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
• We propose TA technique
To mitigate the distribution shift problem IL often suffers



Conclusion

Contributions:
• Frame text editing into an imitation game
• We involve TG to translate standard datasets
• We introduce D2 as a novel non-autoregressive decoder
• We propose TA technique

Future work:
• Reward function, action design, trajectory optimization



Conclusion

Limitations
• Efficiency issue due to multiple calls of encoder (e.g., a heavy

pretrained language model)
• Application in more realistic editing tasks (e.g., text simplification)

TLDR
Turning tasks into games that agents feel more comfortable with 
sheds light on future studies in the direction of reinforcement 
learning in the application of text editing.
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