Cognitively Inspired Natural Language Processing

Ning Shi, ning.shi@ualberta.ca Supervised by Prof. Grzegorz Kondrak Amii Al Seminar 2022/12/23

Ning Shi is a 1st-year Ph.D. student working with Prof. Grzegorz Kondrak at the University of Alberta, associated with Alberta Machine Intelligence Institute (Amii).

Education:

- Georgia Institute of Technology
- Syracuse University
- New York University
- Donghua University

Experience:

- Beijing Academy of Artificial Intelligence (BAAI)
- Alibaba Group
- Learnable

Outline

- Part1 RoChBert: Towards Robust BERT Fine-tuning for Chinese
- Part2 Revisit Systematic Generalization via Meaningful Learning
- Part3 Text Editing as Imitation Game

RoChBert: Towards Robust BERT Fine-tuning for Chinese

Zihan Zhang, Jinfeng Li, Ning Shi, Bo Yuan, Xiangyu Liu, Rong Zhang, Hui Xue, Donghong Sun, and Chao Zhang

Findings of EMNLP 2022

- Conscience
- Sum of our memories
- All the knowledge
- Natural language processing (NLP) semantics, syntax, imagination, association, etc.
- e.g., What a beautiful day.

- Discrete
- Small perturbation significant change
- Small change significant perturbation

Typoglycemia

• More than what we can see

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae.

Davis, Matt (2012)

- Chinese characters or 漢字 (hànzì)
- Pronunciation (homophones)
 - English: I'll **bury** the **berry**.
 - Chinese: gambling 博彩(bó cǎi) v.s. 菠菜(bō cài)
- Glyph (homoglyph)

English: internationalbank.com - i, I v.s., I, L; o, O v.s., O Chinese: WeChat - 微信(wēi xìn)v.s. 薇信(wēi xìn)

- Adversarial graph
- Multimodal fusion
- Data augmentation by curriculum learning

Adversarial Graph

Knowledge representation

- Adversarial graph involving <u>stroke code</u> StoneSkipping (Jiang et al., 2019) AdvGraph (Li et al., 2021)
- Node -> Chinese character
- Edge -> phonetic or glyph relationship
- 3,000 -> 7,707 nodes
- 109,706 edges

Multimodal Fusion

Knowledge fusion

- Knowledge as a second modal
- Graph embedding (e.g., node2vec)
- Word embedding (e.g., BERT)

• Concatenation and fusion (e.g., self-attention)

Data Augmentation

Curriculum learning

- Adversarial texts
- Not only adversarial examples samples mislead the target model
- But also intermediate texts
 - samples lead to a confidence decline

Algor	ithm 1 : The detail of data augmentation.
Input:	Training dataset D , the target classifier \mathcal{F} with map-
pir	$\log f$.
Outpu	t: New training dataset D_{ag} .
1: fo r	$x \in D$ do
2:	$tmp \leftarrow \{\}$
3:	$\hat{y} = \mathcal{F}_f(x)$
4:	if \hat{y} is not the ground-truth label then
5:	continue
6:	end if
7:	$x^*=x, \hat{y}^*=\hat{y}$
8:	while $\hat{y}^* == \hat{y}$ do
9:	$x^* = x^* + \Delta x \triangleright$ According to attack algorithms
10:	$\hat{y}^* = \mathcal{F}_f(x^*)$
11:	$tmp \leftarrow tmp \bigcup \{x^*\}$
12:	if all the words in x are modified then
13:	break
14:	end if
15:	end while
16:	if $\hat{y}^{*} eq \hat{y}$ and $\left\ x^{*} - x \right\ _{p} < \epsilon_{max}$ then
17:	$D_{ag} \leftarrow D_{ag} \bigcup tmp$
18:	end if
19:	if $size(D_{ag}) > size(D)$ then
20:	$D_{ag} \leftarrow D_{ag} \bigcup D$
21:	break
22:	end if
23: en	d for
24: ret	turn D_{ag} ;

Method

Data

Sentiment analysis, text classification, and natural language inference

ChnSentiCorp

github.com/pengming617/bert_classification/tree/master/data

• DMSC

https://www.kaggle.com/utmhikari/doubanmovieshortcomments

- THUCNews (Sun et al., 2016)
- OCNLI

https://github.com/cluebenchmark/OCNLI

Baselines

- ChineseBERT (Sun et al., 2021)
- Chinese spelling corrector (SC)

https://github.com/shibing624/pycorrector

Evaluation

- Accuracy
- Modification rate (MR)
- Unlimited attack success rate (UASR)
- Limited attack success rate (LASR)

Model	Chnsenti.	DMSC	THUC.	OCNLI
ChineseBERT	95.25	92.95	97.87	73.20
BERT _{base}	95.33	93.02	98.07	71.57
+SC	94.42	92.85	98.07	70.57
+RoChBert (PWWS)	95.58	93.05	97.87	67.76
+RoChBert (TextBugger)	95.83	92.75	98.00	67.34
+RoChBert (Random)	95.92	92.70	98.13	70.25
BERT _{wwm}	94.58	92.51	97.87	70.33
+SC	93.58	92.45	97.93	69.08
+RoChBert (PWWS)	94.92	92.70	97.93	67.23
+RoChBert (TextBugger)	95.75	93.30	97.80	67.71
+RoChBert (Random)	95.25	91.45	98.00	70.09
BERT _{wwm/ext}	96.00	93.29	97.73	71.16
+SC	95.00	93.20	97.80	70.68
+RoChBert (PWWS)	95.58	94.00	97.80	68.31
+RoChBert (TextBugger)	95.42	93.30	97.87	68.65
+RoChBert (Random)	95.83	93.60	97.73	71.40
RoBERTa _{wwm/ext}	95.58	92.89	98.00	71.29
+SC	94.50	92.95	97.87	70.88
+RoChBert (PWWS)	95.58	93.10	98.13	68.31
+RoChBert (TextBugger)	95.83	93.56	97.93	69.09
+RoChBert (Random)	95.50	93.45	98.07	72.45

Model	PWWS			TextBugger		Random		PWWS			TextBugger			Random				
	UASR	LASR	MR	UASR	LASR	MR	UASR	LASR	MR	UASR	LASR	MR	UASR	LASR	MR	UASR	LASR	MR
	ChnSetiCorp																	
ChineseBERT	79.73	40.97	27.22	93.25	42.67	23.64	54.91	3.38	51.23	71.55	23.44	44.82	69.80	36.23	23.63	78.40	1.13	64.68
BERT _{base}	83.62	67.66	12.96	97.45	69.26	16.12	52.77	8.19	42.85	81.31	25.64	44.60	58.43	43.21	14.87	80.59	2.56	61.42
+SC	82.75	64.86	13.74	96.49	71.25	14.85	54.42	7.56	43.01	80.51	29.18	40.87	59.90	46.02	13.26	79.08	2.55	61.96
+RoChBert	65.18	31.63	29.49	64.45	34.92	20.35	39.49	10.98	37.48	66.35	5.11	63.71	9.66	9.10	8.05	51.17	0.81	66.57
BERTwwm	87.53	56.56	19.86	98.28	64.73	16.89	48.27	6.45	44.91	73.77	36.27	35.17	78.28	46.93	21.07	74.90	2.67	58.81
+SC	84.62	57.42	18.75	97.63	68.60	15.95	50.54	5.59	45.62	76.66	30.19	38.37	72.26	45.45	17.96	73.49	2.97	58.68
+RoChBert	64.42	22.94	41.94	62.24	35.23	19.6	42.31	6.36	44.88	76.60	5.19	64.00	13.09	11.15	11.94	45.77	0.72	64.67
BERT _{wwm/ext}	72.04	42.93	22.21	92.93	53.27	20.16	56.96	5.80	40.44	79.63	21.29	48.05	86.39	29.99	31.85	78.81	1.74	60.79
+SC	75.00	50.53	18.19	90.93	57.59	17.47	57.07	5.91	41.04	82.72	21.98	46.59	79.04	33.54	26.08	79.24	2.76	60.04
+RoChBert	62.75	24.44	37.08	65.74	31.70	23.17	38.45	6.45	44.26	66.80	7.89	60.09	13.10	8.80	16.31	51.07	0.61	66.04
RoBERTa _{wwm/ext}	76.46	44.11	23.25	99.78	54.19	21.49	57.58	5.83	44.14	72.58	17.02	50.12	81.24	30.27	28.46	79.51	1.22	62.27
+SC	80.47	52.23	19.62	98.20	59.66	18.26	55.94	6.90	44.00	81.51	19.41	48.52	77.22	35.55	24.33	79.57	1.23	62.43
+RoChBert	65.85	22.69	39.14	54.18	28.57	20.49	38.59	8.41	36.60	59.92	4.68	63.54	5.49	4.88	7.70	59.04	1.83	60.33
					DMSC					OCNLI								
ChineseBERT	78.76	60.35	16.64	92.20	59.37	18.47	53.30	7.04	48.75	62.57	46.22	17.32	73.78	35.27	25.16	38.92	8.38	40.92
BERT _{base}	76.70	61.06	15.74	78.75	60.19	13.79	56.31	7.66	46.69	58.68	42.29	17.39	65.84	35.95	22.96	40.08	10.06	38.59
+SC	83.24	63.24	17.87	82.49	63.24	13.54	57.51	6.38	47.25	56.50	42.38	15.81	65.73	36.08	21.87	38.88	8.81	38.82
+RoChBert	68.67	46.70	23.66	36.36	29.22	12.43	44.94	10.13	39.21	43.58	29.73	17.90	48.99	24.21	24.53	36.50	5.65	47.04
BERTwwm	95.66	76.66	13.53	99.67	76.33	13.92	52.88	6.30	43.41	56.06	40.42	17.09	64.23	32.54	23.97	36.34	8.03	42.91
+SC	94.46	74.38	13.66	98.91	77.96	13.07	55.70	7.38	43.59	55.33	40.68	16.28	63.30	33.43	22.69	36.56	8.68	41.33
+RoChBert	64.94	50.00	14.00	44.85	33.47	15.94	46.78	11.91	40.22	50.00	30.18	20.79	50.36	20.32	27.54	39.21	7.05	46.48
BERT _{wwm/ext}	85.52	60.30	17.63	99.79	69.31	16.35	57.51	5.90	49.93	62.22	45.56	16.46	69.31	37.08	23.15	40.69	8.61	41.58
+SC	88.41	63.95	16.98	99.36	72.85	15.36	59.12	6.76	48.85	61.79	47.70	15.26	69.32	37.10	21.83	43.10	10.74	40.65
+RoChBert	75.40	46.31	22.37	40.36	29.98	14.65	37.38	6.87	47.99	51.75	32.75	21.27	54.69	20.23	28.24	39.52	7.45	45.33
RoBERTa _{wwm/ext}	69.70	50.76	20.04	83.12	53.90	18.69	52.71	7.79	39.31	66.21	46.02	17.65	80.08	37.09	26.35	40.66	7.01	43.34
+SC	75.54	55.19	18.54	85.82	57.47	17.57	54.87	7.68	40.70	65.10	47.31	17.48	79.03	40.14	24.01	41.66	8.83	40.91
+RoChBert	55.15	28.06	34.80	59.25	35.27	19.52	44.86	7.92	43.98	60.14	35.11	22.33	51.43	21.57	27.31	36.86	7.70	42.60

Observation

- Robustness in adaptive settings (figure)
- Ablation study (table)

Model	Acc.	UASR	LASR	MR
BERT _{base}	93.02	78.75	60.19	13.79
+graph	93.05	71.53	50.32	16.40
+aug.	93.85	68.01	48.01	17.56
+graph+aug.	94.15	73.16	19.36	40.69
+RoChBert	92.75	36.36	29.22	12.43

Representation Visualization

- (a) Benign texts BERT_{base}
- (b) Adversarial texts $BERT_{base}$
- (c) Adversarial texts ChineseBERT
- (d) Adversarial texts RoChBert

TLDR

Conclusion

- RoChBert a plug-in for the robustness of Chinese language model
- Incorporating human knowledge (e.g., adversarial graph)
- Knowledge representation -> knowledge fusion
- Knowledge can be helpful in many NLP tasks

e.g., Incorporating External POS Tagger for Punctuation Restoration (Shi et al., 2021)

Revisit Systematic Generalization via Meaningful Learning Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, and Zhouhan Lin the Fifth BlackboxNLP at EMNLP 2022

Systematic Generalization

- Talent of human
- How about neural networks?
- Pessimistic view
- Optimistic results

Question by Lake and Baroni (2018) on page 8:

What are, precisely, the generalization mechanisms that subtend the networks' success in these experiments?

Meaningful Learning

In educational psychology, meaningful learning refers to learning new concepts by relating them to old ones (Ausubel, 1963).

On the contrary, rote learning stands for learning new concepts without the consideration of relationships.

Inductive Learning

In grammar teaching, inductive learning is a <u>rule discovery</u> approach starting with the presentation of specific examples from which a general rule can be inferred.

Deductive Learning

Deductive Learning, the opposite of inductive learning, is a <u>top-down</u> approach from the more general to the more specific.

As a <u>rule-driven</u> approach, teaching in a deductive manner often begins with presenting a general rule followed by specific examples in practice where the rule is applied.

Meaningful Learning

Experimental Setup

Data

- SCAN (Lake and Baroni, 2018)
- GEO from Geography https://github.com/jkkummerfeld/text2sql-data
- ADV from Advising https://github.com/jkkummerfeld/text2sql-data

Seq2seq models

- RNN bi-directional recurrent networks with LSTM units
- CNN convolutional seq2seq structure (Gehring et al., 2017)
 - TFM Transformer (Vaswani et al., 2017)

Experimental Setup

Data	Sequence	
SCAN	Source Target	jump twice JUMP JUMP
GEO	Source Target	how many people in new york city SELECT CITY alias0 . POPULATION FROM CITY AS CITY alias0 WHERE CITY alias0 . CITY_NAME = CITY_NAME ;
ADV	Source Target	Which department includes a history of american film ? SELECT DISTINCT COURSE alias0. DEPARTMENT FROM COURSE AS COURSE alias0 WHERE COURSE alias0. NAME LIKE TOPIC;
Geography	Source Target	how many people live in new york SELECT STATE alias0 . POPULATION FROM STATE AS STATE alias0 WHERE STATE alias0 . STATE_NAME = " new york ";
Advising	Source Target	I would like to see A History of American Film courses of 2 credits. SELECT DISTINCT COURSE alias0. DEPARTMENT, COURSE alias0. NAME, COURSE alias0. NUMBER FROM COURSE AS COURSE alias0 WHERE (COURSE alias0. DESCRIPTION LIKE "% A History of American Film %" OR COURSE alias0. NAME LIKE "% A History of American Film %") AND COURSE alias0. CREDITS = 2;

Experimental Setup

Evaluation

- Token accuracy (Token Acc.)
- Sequence accuracy (Seq. Acc.)

		SCAN					GEO				ADV				Geography		Advising			
Data		Exp. 1		Exp. 2			Exp. 1		Exp. 2			Exp. 1		Exp. 2		Bas	Αιισ	Bas	Α 11σ	
		Sta.	Dif.	Cha.	Sta.	Dif.	Sta.	Dif.	Cha.	Sta.	Dif.	Sta.	Dif.	Cha.	Sta.	Dif.	Dust	us. mug. 1	245.	Trug.
Train Test S	Size lize	20946 308240	20942 308240	20928 308240	20950 308240	20946 308240	724 21350	720 21350	711 21350	728 21350	724 21350	6038 107614	6034 107614	5969 107614	6040 107614	6036 107614	598 279	701 279	3814 573	5660 573
	RNN			21					5					19			4	5	27	35
Time	CNN			17					1.2					11			1	1.2	12	19
	TFM			7					0.5					5			0.4	0.5	6	8

- 2. We decrease the number of augmented samples for each variant until the one-shot learning setting.
- 3. We train the same model on these various datasets to format a gradual transition from baselines to the one-shot learning.

Data	Primitive	Semantic Links	Variant	Concept Rule					
Dutu			, ui iuiiv	Primitive Rule	Variant Rule				
SCAN	jump look run walk	Lexical Variant	jump_0 look_0 run_0 walk_0	$jump \rightarrow JUMP$ $look \rightarrow LOOK$ $run \rightarrow RUN$ $walk \rightarrow WALK$	$jump_0 \rightarrow JUMP$ $look_0 \rightarrow LOOK$ $run_0 \rightarrow RUN$ $walk_0 \rightarrow WALK$				
GEO	new york city mississippi rivier dc dover	Co-hyponym	houston city red rivier kansas salem	new york city \rightarrow CITY_NAME mississippi rivier \rightarrow RIVER_NAME $dc \rightarrow$ STATE_NAME $dover \rightarrow$ CAPITAL_NAME	houston city \rightarrow CITY_NAME red rivier \rightarrow RIVER_NAME kansas \rightarrow STATE_NAME salem \rightarrow CAPITAL_NAME				
ADV	a history of american film aaron magid aaptis 100	Co-hyponym	advanced ai techniques cargo survmeth 171	a history of american film \rightarrow TOPIC aaron magid \rightarrow INSTRUCTOR aaptis \rightarrow DEPARTMENT 100 \rightarrow NUMBER	advanced ai techniques \rightarrow TOPIC cargo \rightarrow INSTRUCTOR survmeth \rightarrow DEPARTMENT $171 \rightarrow$ NUMBER				

Data	Primitive	Variant	#Variants	Prompt
SCAN	jump	jump_0	10	[concept] twice
GEO	new york city	houston city	39	how many people in [concept]
	mississippi rivier	red rivier	9	how long is [concept]
	dc	kansas	49	where is [concept]
	dover	salem	8	what states capital is [concept]
ADV	a history of american film	advanced ai techniques	5/424	who teaches [concept] ?
	aaron magid	cargo	5/492	does [concept] give upper-level courses ?
	aaptis	survmeth	5/1720	name core courses for [concept] .
	100	171	5/1895	can undergrads take [concept] ?

- Standard: models are trained on prior knowledge and one variant sample per variant (i.e., the same one-shot setting).
- Difficult: We remove from the prior knowledge primitive samples sharing the same context with their variant samples.

(e.g., we remove "jump twice" due to "jump_0 twice")

• Challenging: We also exclude from the prior knowledge primitive samples of the same length as their variant samples.

(e.g., we remove "jump twice", "jump right", "jump left")

Data	Model	Token Acc.%			Seq. Acc.%			
		Standard	Difficult	Challenging	Standard	Difficult	Challenging	
	RNN	99.99 ± 0.03	99.89 ± 0.19	99.96 ± 0.02	99.95 ± 0.08	99.85 ± 0.08	99.80 ± 0.31	
SCAN	CNN	99.96 ± 0.08	99.76 ± 0.54	98.89 ± 2.44	99.85 ± 0.34	99.52 ± 1.07	97.57 ± 5.24	
	TFM	98.91 ± 0.78	98.90 ± 1.10	98.76 ± 0.85	97.35 ± 1.62	96.86 ± 2.64	96.38 ± 2.81	
	RNN	75.71 ± 8.42	75.69 ± 6.12	73.46 ± 3.05	44.95 ± 14.69	43.27 ± 13.47	36.77 ± 5.60	
GEO	CNN	87.99 ± 2.67	79.51 ± 6.03	77.40 ± 2.48	69.46 ± 5.78	51.20 ± 8.64	48.58 ± 3.40	
_	TFM	75.37 ± 7.84	75.11 ± 4.88	68.41 ± 4.76	45.93 ± 12.42	44.59 ± 9.76	36.93 ± 7.47	
	RNN	58.61 ± 6.18	59.74 ± 5.67	58.11 ± 5.82	36.18 ± 5.75	35.69 ± 6.05	35.45 ± 6.69	
ADV	CNN	57.83 ± 7.55	54.05 ± 5.74	53.66 ± 2.57	45.08 ± 9.32	42.14 ± 6.90	41.37 ± 4.04	
	TFM	53.43 ± 2.80	51.51 ± 4.50	49.17 ± 2.58	42.59 ± 3.65	41.28 ± 4.35	38.88 ± 2.68	

• Difficult: We remove primitive rules from the training set. Consequently, semantic links are weakened and depend on variant rules only.

Concept Rule							
Primitive Rule	Variant Rule						
$jump \rightarrow JUMP$ $look \rightarrow LOOK$ $run \rightarrow RUN$	$jump_0 \rightarrow JUMP$ $look_0 \rightarrow LOOK$ $run_0 \rightarrow RUN$						
$walk \rightarrow WALK$ $new york city \rightarrow CITY_NAME$ $mississippi rivier \rightarrow RIVER_NAME$ $dc \rightarrow STATE_NAME$ $dover \rightarrow CAPITAL_NAME$	$walk_0 \rightarrow WALK$ $houston \ city \rightarrow CITY_NAME$ $red \ rivier \rightarrow RIVER_NAME$ $kansas \rightarrow STATE_NAME$ $salem \rightarrow CAPITAL_NAME$						
a history of american film \rightarrow TOPIC aaron magid \rightarrow INSTRUCTOR aaptis \rightarrow DEPARTMENT 100 \rightarrow NUMBER	advanced ai techniques \rightarrow TOPIC cargo \rightarrow INSTRUCTOR survmeth \rightarrow DEPARTMENT 171 \rightarrow NUMBER						

Data	Model	Token	Acc.%	Seq. Acc.%			
Dava	1110401	Standard	Difficult	Standard	Difficult		
	RNN	99.48 ± 0.71	98.70 ± 0.92	98.27 ± 2.38	95.39 ± 2.72		
SCAN	CNN	99.99 ± 0.01	98.59 ± 3.10	99.96 ± 0.03	96.66 ± 7.27		
	TFM	96.90 ± 1.78	96.68 ± 2.21	91.94 ± 4.04	91.26 ± 5.80		
	RNN	54.44 ± 7.15	39.71 ± 18.38	13.61 ± 7.08	7.76 ± 5.34		
GEO	CNN	41.86 ± 3.38	41.07 ± 7.48	4.85 ± 4.66	4.04 ± 2.18		
	TFM	67.02 ± 6.91	65.97 ± 5.17	36.38 ± 10.08	31.57 ± 7.42		
	RNN	36.50 ± 7.66	36.42 ± 7.39	12.84 ± 4.31	12.66 ± 5.19		
ADV	CNN	43.51 ± 11.31	35.34 ± 14.68	32.33 ± 12.93	23.58 ± 16.04		
	TFM	56.82 ± 3.79	53.33 ± 3.85	47.43 ± 3.71	43.24 ± 5.14		

 Experiments over RNN on SCAN with vary-ing #primitives (a) and #variants (b).

Proof of Concept

	IWSLT'14				IWSLT'15			
Model	En-De		De-En		En-Fr		Fr-En	
	BLEU	SacreBLEU	BLEU	SacreBLEU	BLEU	SacreBLEU	BLEU	SacreBLEU
Baselines								
LSTM (Luong et al., 2015)	24.98	24.88	30.18	32.62	38.06	42.93	37.34	39.36
Transformer (Vaswani et al., 2017)	28.95	28.85	35.24	37.60	41.82	46.41	40.45	42.61
Dynamic Conv. (Wu et al., 2019)	27.39	27.28	33.33	35.54	40.41	45.32	39.61	41.42
+Vocabulary Augmentation								
LSTM (Luong et al., 2015)	$25.35 \uparrow_{0.37}$	$25.38\uparrow_{0.50}$	$30.99\uparrow_{0.81}$	$33.63^{+}_{1.01}$	$38.32^{+}_{0.26}$	$43.30^{+}_{0.37}$	$37.77_{0.43}$	$39.83_{0.47}$
Transformer (Vaswani et al., 2017)	$29.40^{\circ}_{0.45}$	$29.29\uparrow_{0.44}$	$35.72^{\circ}_{0.48}$	$38.07_{0.47}$	$42.19_{0.37}$	$46.68 \uparrow_{0.27}$	$41.04^{+}_{0.59}$	$43.15_{0.54}$
Dynamic Conv. (Wu et al., 2019)	$27.60{\uparrow_{0.21}}$	$27.50\uparrow_{0.22}$	$33.62\uparrow_{0.29}$	$36.00\uparrow_{0.46}$	$40.87\uparrow_{0.46}$	$45.95 \uparrow_{0.63}$	$39.95\uparrow_{0.34}$	$41.86\uparrow_{0.44}$

Proof of Concept

		Geography				Advising				
Model	Train		Test		Tra	in	Test			
	Token Acc.%	Seq. Acc.%	Token Acc.%	Seq. Acc.%	Token Acc.%	Seq. Acc.%	Token Acc.%	Seq. Acc.%		
Baselin	es									
RNN	89.05	17.39	69.81	9.68	92.22	3.64	60.41	6.11		
CNN	98.45	70.74	78.44	55.91	99.74	81.62	81.74	51.13		
TFM	99.45	84.95	80.24	49.82	99.68	76.90	78.51	29.67		
+Entity	Augmentation									
RNN	87.47	29.96	$72.39\uparrow_{2.58}$	$15.05\uparrow_{5.37}$	88.82	30.97	$71.17 \uparrow_{10.76}$	$16.06 \uparrow_{9.95}$		
CNN	97.54	76.03	$80.32\uparrow_{1.88}$	$60.93\uparrow_{5.02}$	99.65	87.01	$84.50\uparrow_{2.76}$	$56.02\uparrow_{4.89}$		
TFM	99.30	85.73	$81.09\uparrow_{0.85}$	$54.84\uparrow_{5.02}$	99.57	86.94	$84.26_{15.75}$	$35.08\uparrow_{5.41}$		

TLDR

Conclusion

- We revisit systematic generalization from a meaningful learning perspective by either inductive or deductive semantic linking.
- Modern seq2seq models can generalize to new concepts and compositions after semantic linking, which empirically answers the question by Lake and Baroni (2018).
- Both semantic linking and prior knowledge play a key role, in line with meaningful learning theory.
- Meaningful learning already benefits models in solving realistic problems

Text Editing as Imitation Game

Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, and Zhouhan Lin

Findings of EMNLP 2022

Introduction

Text Editing

- Text simplification (e.g., dyslexia friendly)
- Grammatical error correction (e.g., Grammarly)
- Post processing (e.g., MT)
- Punctuation restoration (e.g., ASR)
- To name a few

Introduction

From End to End (End2end)

- Simplicity
- Good results
- Not much effort

But

- Copy mechanism
- Translate overlap

Source Text (x) 112 <pad> Target Text(y) <s> 1+1=2 </s>

Introduction

Sequence Tagging (Token-level Action Generation)

• Tag <keep> for overlap

But

• Action bounded by token

Source Text (x) 112 Target Tag (y') <insert_+> <insert_=> <keep>

Imitation Learning (IL) & Recurrent Inference (Sequence-level Action Generation)

- Dynamic encoder context matrix
- Complex task decomposed into easier sub-tasks
- Highest degrees of action flexibility at sequence-level

Three approaches – sequence tagging (left), end-to-end (middle), sequence generation (right).

Markov Decision Process (MDP) Definition

• State S – a set of text sequences Source text x as initial state s_1 (e.g., 112) Target text y as target state s_T (e.g., 1+1=2) Every edited texts as intermediate states s_t (e.g., 1+12) Thus, the path $X \mapsto Y$ can be a set of sequential states $s_{<T}$

Markov Decision Process (MDP) Definition

- State *S* a set of text sequences
- Action *A* a set of action sequences

Edit metric *E* (e.g., Levenshtein distance)

As long as $X \mapsto Y$ given A_E

Examples: [INSERT, POS_3, =]

INSERT -> operation token

POS_3 -> position token

Markov Decision Process (MDP) Definition

- State *S* a set of text sequences
- Action *A* a set of action sequences
- Transition matrix P the probability that a_t leads s_t to s_{t+1}

Due to the nature of text editing, we know it is always 1, meaning always happen.

Markov Decision Process (MDP) Definition

- State *S* a set of text sequences
- Action *A* a set of action sequences
- Transition matrix P the probability that a_t leads s_t to s_{t+1}
- Environment \mathcal{E} to update state by $s_{t+1} = \mathcal{E}(s_t, a_t)$

The game environment is episodic and allows control of the editing process.

Markov Decision Process (MDP) Definition

- State *S* a set of text sequences
- Action *A* a set of action sequences
- Transition matrix P the probability that a_t leads s_t to s_{t+1}
- Environment \mathcal{E} to update state by $s_{t+1} = \mathcal{E}(s_t, a_t)$
- Reward function *R* to calculate a reward for each action

In this work, we focus on behavior cloning (BC), so the reward function can be omitted for now.

Markov Decision Process (MDP) Definition

- State *S* a set of text sequences
- Action *A* a set of action sequences
- Transition matrix P the probability that a_t leads s_t to s_{t+1}
- Environment \mathcal{E} to update state by $s_{t+1} = \mathcal{E}(s_t, a_t)$
- Reward function *R* to calculate a reward for each action

The formulation turns out to be a simplified $M_{BC} = (S, A, \mathcal{E})$

An example of the imitation game to complete "112" as "1 + 1 = 2".

Trajectory Generation (TG)

How to convert conventional sequence-to-sequence data into state-to-action demonstrations?

Dynamic programming (DP) to back trace the minimum edit distance given the edit metric.

Algorithm 1 Trajectory Generation (TG)

Input: Initial state \mathbf{x} , goal state \mathbf{y} , environment \mathcal{E} , and edit metric E.

Output: Trajectories τ .

1: $\tau \leftarrow \emptyset$ 2: $\mathbf{s} \leftarrow \mathbf{x}$

3:
$$ops \leftarrow DP(\mathbf{x}, \mathbf{y}, E)$$

4: for $op \in ops$ do

- 5: $\mathbf{a} \leftarrow \operatorname{Action}(op)$ 6: $\tau \leftarrow \tau \cup [(\mathbf{s}, \mathbf{a})]$
- ▷ Translate operation to action

 $\mathbf{s} \leftarrow \mathcal{E}(\mathbf{s}, \mathbf{a})$ 8: end for

7:

9: $\tau \leftarrow \tau \cup [(\mathbf{s}, \mathbf{a}_T)] \triangleright$ Append goal state and output action 10: return τ

Trajectory Augmentation (TA)

IL suffers from distribution shift and error accumulation.

TA to expand the expert demonstrations and actively expose shifted states utilizing the divideand-conquer technique. Algorithm 2 Trajectory Augmentation (TA)

Input: States S, state s_t , expert states S^{*}, actions A, and environment \mathcal{E} .

Output: Augmented states S.

1: if |A| > 1 then 2: $\mathbf{a}_t \leftarrow \mathbf{A}.\mathrm{pop}(0)$ 3: $\mathbf{s}_{t+1} \leftarrow \mathcal{E}(\mathbf{s}_t, \mathbf{a}_t)$ 4: 5: $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_{t+1}, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ ▷ Execute action $\mathbf{A} \leftarrow \text{Update}(\mathbf{A}, \mathbf{s}_t, \mathbf{s}_{t+1})$ $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_t, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ 6: ▷ Skip action 7: else if $s_t \notin S^*$ then $\mathbf{S} \leftarrow \mathbf{S} \cup [\mathbf{s}_t]$ 8: ▷ Merge shifted state 9: end if

10: **return S**

Trajectory Augmentation (TA)

Advantages:

- To preserve the i.i.d. assumption
- No dependency on the task
- No domain knowledge
- No labeling work
- No further evaluation

Algorithm 2 Trajectory Augmentation (TA)

Input: States S, state s_t , expert states S^{*}, actions A, and environment \mathcal{E} .

Output: Augmented states S.

1: if |A| > 1 then 2: $\mathbf{a}_t \leftarrow \mathbf{A}.\mathrm{pop}(0)$ 3: $\mathbf{s}_{t+1} \leftarrow \mathcal{E}(\mathbf{s}_t, \mathbf{a}_t)$ 4: 5: $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_{t+1}, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ ▷ Execute action $\mathbf{A} \leftarrow \text{Update}(\mathbf{A}, \mathbf{s}_t, \mathbf{s}_{t+1})$ $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_t, \mathbf{S}^*, \mathbf{A}, \mathcal{E})$ 6: ▷ Skip action 7: else if $s_t \notin S^*$ then $\mathbf{S} \leftarrow \mathbf{S} \cup [\mathbf{s}_t]$ 8: ▷ Merge shifted state 9: end if

10: **return S**

Non-Autoregressive Decoding

The conventional autoregressive decoder (a) compared with the proposed non-autoregressive D2 (b) in which the linear layer aligns the sequence length dimension for the subsequent parallel decoding.

Antimicus Equation (AE)

AOR ($N = 10, L = 5, D = 10$ K)			AES ($N = 100, L = 5, D = 10$ K)			AEC ($N = 10, L = 5, D = 10$ K)		
Train/Valid/Test	Train TA	Traj. Len.	Train/Valid/Test	Train TA	Traj. Len.	Train/Valid/Test	Train TA	Traj. Len.
7,000/1,500/1,500	145,176	6	7,000/1,500/1,500	65,948	6	7,000/1,500/1,500	19,764	4

Table 1: Data statistics of AE benchmarks.

Term	AOR ($N = 10, L = 5, D = 10$ K)	AES ($N = 100, L = 5, D = 10$ K)	AEC ($N = 10, L = 5, D = 10$ K)
Source x	36293	65 + (25 - 20) - (64 + 32) + (83 - 24) = (-25 + 58)	- 2 * + 4 10 + 8 / 8 = 8
Target y	-3 - 6 / 2 + 9 = 3	65 + 5 - 96 + 59 = 33	- 2 + 10 * 8 / 8 = 8
State \mathbf{s}_t^*	- 3 - 6 / 2 9 3	65 + 5 - (64 + 32) + (83 - 24) = (-25 + 58)	-2+410+8/8=8
Action \mathbf{a}_t^*	[POS_6, +]	[POS_4, POS_8, 96]	[DELETE, POS_3, POS_3]
Next State s_{t+1}^*	- 3 - 6 / 2 + 9 3	65 + 5 - 96 + (83 - 24) = (-25 + 58)	- 2 + 10 + 8 / 8 = 8
Shifted State \mathbf{s}_t'	-3 - 6 / 29 = 3	65 + 5 - (64 + 32) + 59 = (- 25 + 58)	- 2 + 4 10 * 8 / 8 = 8

Table 2: Examples from AE with specific N for integer size, L for the number of integers, and D for data size.

AE benchmarks: Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), and Arithmetic Equation Correction (AEC)

Models

- **End2end** translate *x* to *y* from end to end
- **Tagging** token level action
- **Recurrence** recurrent inference via autoregressive LSTM
- **Recurrence*** rerun the source code of Recurrence that only has access to the fixed training set
- **AR** our reproduction of Recurrence* in our pipeline
- **AR*** increase the encoder layers in AR from 1 to 4
- NAR replace autoregressive decoder of AR* with a linear layer to enable non-autoregressive decoding
- NAR* our method with D2 non-autoregressive decoder
- **+TA** enable trajectory augmentation

Experimental Results

Method	AOR ($N = 10, L = 5, D = 10$ K)			AES ($N = 100$,	L = 5, D = 10K)	AEC ($N = 10, L = 5, D = 10$ K)		
	Tok. Acc. %	Seq. Acc. %	Eq. Acc. %	Tok. Acc. %	Eq. Acc. %	Tok. Acc. %	Seq. Acc. %	Eq. Acc. %
End2end	_	_	29.33	84.60	25.20	88.08	57.27	57.73
Tagging	_	_	51.40	87.00	36.67	84.46	46.93	47.33
Recurrence	_	_	58.53	98.63	87.73	83.64	57.47	58.27
Recurrence*	60.30 ± 1.30	27.31 ± 1.33	56.73 ± 1.33	79.82 ± 0.37	22.28 ± 0.52	82.32 ± 0.56	41.72 ± 0.74	42.13 ± 0.75
AR	61.85 ± 0.51	28.83 ± 1.14	59.09 ± 0.95	88.12 ± 2.37	37.05 ± 6.57	82.61 ± 0.53	45.81 ± 0.36	46.31 ± 0.31
AR*	62.51 ± 0.62	30.85 ± 0.41	61.35 ± 0.33	99.27 ± 0.32	93.57 ± 2.91	82.29 ± 0.39	45.99 ± 0.49	46.35 ± 0.52
NAR	59.72 ± 0.70	24.16 ± 1.16	51.64 ± 1.97	83.87 ± 1.60	29.49 ± 2.51	80.28 ± 0.76	44.91 ± 1.71	45.40 ± 1.78
NAR*	62.81 ± 0.89	30.13 ± 1.31	61.45 ± 1.61	99.51 ± 0.13	95.67 ± 0.93	81.82 ± 0.68	45.97 ± 1.07	46.43 ± 1.10
AR +TA	62.35 ± 0.61	32.28 ± 0.67	63.56 ± 1.06	88.05 ± 1.20	38.39 ± 3.45	$83.94 \pm 0.42 \ast$	49.36 ± 1.23	49.83 ± 1.21
AR* +TA	62.58 ± 0.63	33.01 ± 1.31	65.73 ± 1.38	99.44 ± 0.27	95.24 ± 2.38	83.39 ± 0.74	48.95 ± 0.65	49.47 ± 0.73
NAR +TA	61.30 ± 0.86	32.04 ± 1.99	63.75 ± 2.08	90.38 ± 2.21	47.91 ± 8.18	81.36 ± 0.40	48.01 ± 1.07	48.47 ± 1.15
NAR* +TA	$63.48 \pm \mathbf{0.38^*}$	$34.23 \pm \mathbf{0.92^*}$	$67.13 \pm \mathbf{0.99^{*}}$	$99.58 \pm \mathbf{0.15^*}$	$96.44 \pm \mathbf{1.29^{*}}$	82.70 ± 0.42	$49.64 \pm \mathbf{0.59^{*}}$	$old 50.15\pm0.55^*$

Table 3: Evaluation results on AOR, AES, and AEC with specific N, L, and D. The token and sequence accuracy for AOR were not reported, thus we leave these positions blank here. With or without TA, our proposed NAR* achieves the best performance in terms of equation accuracy across the board.

Experimental Results

Analysis

Action Design

Due to the liberty of sequence generation, the same operation can be represented as different action sequences by, for example, a simple swap of action tokens.

Our NAR* stays nearly consistent across three designs.

Design	Action Sequence	Method	Tok. Acc. %	Eq. Acc. %
#1	[Pas Pas - Tak]	AR* NAR*	$99.27 \pm 0.32 \\ \textbf{99.51} \pm \textbf{0.13}$	$\begin{array}{c} 93.57 \pm 2.91 \\ \textbf{95.67} \pm \textbf{0.93} \end{array}$
"1	[, 001[, , 001, , , 10, .]	AR* +TA NAR* +TA	$99.44 \pm 0.27 \\ \textbf{99.58} \pm \textbf{0.15}^*$	$95.24 \pm 2.38 \\ \textbf{96.44} \pm \textbf{1.29}^*$
#2	[Post Tok Post]	AR* NAR*	$99.08 \pm 0.93 \\ \textbf{99.50} \pm \textbf{0.27}$	$92.35 \pm 7.21 \\ \textbf{95.55} \pm \textbf{2.28}$
	[103.[, 100., 103.8]	AR* +TA NAR* +TA	$\begin{array}{c} 99.52 \pm 0.29 \\ \textbf{99.54} \pm \textbf{0.20}^* \end{array}$	$\begin{array}{c} 95.68 \pm 2.49 \\ \textbf{95.97} \pm \textbf{1.64}^* \end{array}$
#3	[Tok., Pos. _L , Pos. _R]	AR* NAR*	$98.06 \pm 0.79 \\ 99.53 \pm 0.14$	83.79 ± 6.25 95.99 ± 0.81
		AR* +TA NAR* +TA	$98.43 \pm 0.49 \\ \textbf{99.61} \pm \textbf{0.06}^*$	87.29 ± 3.70 $96.55 \pm 0.46^*$

Table 4: Evaluation of AR* and NAR* in AES across three action designs that vary from each other by token order. They directs to the same operation with $Pos_{L}/Pos_{R}/Tok$. denoting left parenthesis/right parenthesis/target token.

Trajectory Optimization

A better edit metric *E* often means a smaller action vocabulary space, shorter trajectory length, and, therefore, an easier IL.

An appropriate edit metric **E** depends on the specific task.

Analysis

Dual Decoders

As an ablation study, we freeze the encoder of NAR* and vary its decoder to reveal the contributions of each component in D2.

- Linear replace the decoder with a linear layer
- **Decoder**₀ remove the second decoder from D2
- **Shared D2** share the parameters between two decoders in D2
- **D2 (NAR*)** our method with D2 non-autoregressive decoder
- **+TA** enable trajectory augmentation

Analysis

Dual Decoders

As an ablation study, we freeze the encoder of NAR* and vary its decoder to reveal the contributions of each component in D2.

Decoder	AOR ($N = 10, L = 5, D = 10$ K)			AES ($N = 100, L = 5, D = 10$ K)		AEC ($N = 10, L = 5, D = 10$ K)		
	Tok. Acc. %	Seq. Acc. %	Eq. Acc. %	Tok. Acc. %	Eq. Acc. %	Tok. Acc. %	Seq. Acc. %	Eq. Acc. %
Linear	61.84 ± 0.94	28.55 ± 1.57	57.72 ± 1.55	99.41 ± 0.26	95.01 ± 2.01	81.35 ± 0.92	42.47 ± 1.85	42.81 ± 1.87
Decoder ₀	61.78 ± 0.83	28.20 ± 1.57	58.36 ± 1.58	99.24 ± 0.23	93.49 ± 2.03	80.84 ± 0.66	43.97 ± 1.82	44.32 ± 1.82
Shared D2	61.74 ± 0.71	28.68 ± 0.94	58.05 ± 1.01	99.28 ± 0.24	93.85 ± 2.14	81.38 ± 1.04	43.64 ± 2.03	44.09 ± 2.02
D2 (NAR*)	62.81 ± 0.89	30.13 ± 1.31	61.45 ± 1.61	99.51 ± 0.13	95.67 ± 0.93	81.82 ± 0.68	45.97 ± 1.07	46.43 ± 1.10
Linear +TA	61.41 ± 0.28	31.75 ± 0.93	63.15 ± 0.96	99.42 ± 0.17	95.08 ± 1.47	81.54 ± 0.66	46.79 ± 2.26	47.33 ± 2.30
$Decoder_0 + TA$	62.50 ± 1.24	32.48 ± 1.87	64.47 ± 1.88	99.47 ± 0.13	95.33 ± 1.13	82.02 ± 0.40	46.80 ± 2.04	47.32 ± 1.91
Shared D2 +TA	61.64 ± 0.87	31.21 ± 0.34	62.77 ± 0.85	99.53 ± 0.12	95.91 ± 1.25	81.80 ± 0.47	47.23 ± 1.07	47.61 ± 1.14
D2 (NAR*) +TA	$63.48 \pm \mathbf{0.38^*}$	$34.23 \pm \mathbf{0.92^*}$	$67.13 \pm \mathbf{0.99^{*}}$	$99.58 \pm \mathbf{0.15^*}$	$96.44 \pm \mathbf{1.29^{*}}$	$82.70 \pm \mathbf{0.42^{*}}$	$49.64 \pm \mathbf{0.59^{*}}$	$50.15 \pm \mathbf{0.55^*}$

Table 6: Evaluation of agents equipped with same encoders but different decoders on AE benchmarks.

Contributions:

• Frame text editing into an imitation game

This allows the *highest* degree of flexibility to design actions at the sequence-level, which are arguably more *controllable*, *interpretable*, and *similar* to human behavior.

Contributions:

- Frame text editing into an imitation game
- We involve TG to translate standard datasets

Free to translate the conventional input-output data to stateaction demonstrations for a friendly IL.

Contributions:

- Frame text editing into an imitation game
- We involve TG to translate standard datasets
- We introduce D2 as a novel non-autoregressive decoder To boost the learning in terms of *accuracy*, *efficiency*, and *robustness*

Contributions:

- Frame text editing into an imitation game
- We involve TG to translate standard datasets
- We introduce D2 as a novel non-autoregressive decoder
- We propose TA technique

To mitigate the distribution shift problem IL often suffers

Contributions:

- Frame text editing into an imitation game
- We involve TG to translate standard datasets
- We introduce D2 as a novel non-autoregressive decoder
- We propose TA technique

Future work:

• Reward function, action design, trajectory optimization

Limitations

- Efficiency issue due to multiple calls of encoder (e.g., a heavy pretrained language model)
- Application in more realistic editing tasks (e.g., text simplification)

TLDR

Turning tasks into games that agents feel more comfortable with sheds light on future studies in the direction of reinforcement learning in the application of text editing.

