UAlberta at SemEval 2023 Task 1: Context Augmentation and Translation for Visual WSD

Michael Ogezi, Bradley Hauer, Talgat Omarov, Ning Shi, Grzegorz Kondrak

mikeogezi@ualberta.ca

1. Overview

Task: Given a focus word f in context c, and a set of candidate images I, determine which image $i^* \in I$, best depicts the meaning of f

Our ideas:

- 1. Produce extra context to augment the original context
- 2. Translate non-English samples to English
- 3. Score images based on similarity to context

Our methods:

- 1. Use a language model to generate extra context for augmentation
- 2. Apply a pair-wise image-scoring algorithm to select *i**

Example:

Focus word: bat

3. Method: Translate & Augment

Translation

Focus word: <u>gomma</u> Context: <u>gomma</u> per smacchiare (IT) \rightarrow eraser (EN)

Context Augmentation

Context: baseball $\underline{bat} \rightarrow A$ baseball \underline{bat} is a cylindrical club used to hit a baseball

2. Tools & Resources

- Dataset:
 - □ SemEval 2023 Task 1 dataset: <*f*, *c*, *I*, *i**>
- **Lexical resources:**
 - **BabelNet:** focus word senses and glosses
- □ Models:
 - **CLIP:** pre-trained vision-language model for image similarity
 - **BERT:** pre-trained masked language model for text similarity
 - **ChatGPT:** general-purpose language model for translation

4. Method: Score Candidate Images

1:	$c \leftarrow$ the context of the focus word
2:	$G \leftarrow \text{list of glosses for the focus word}$
3:	$I \leftarrow \text{list of candidate images}$
4:	for <i>i</i> in <i>I</i> do
5:	$S_g \leftarrow \text{empty list}$
6:	for g in G do
7:	$s_{ig} \leftarrow sim^{VL}(i,g) \hspace{0.1in} \triangleright \hspace{0.1in} ext{image-gloss score}$
8:	$s_{cg} \leftarrow sim^L(c,g) \triangleright \text{ context-gloss score}$
9:	$S_g.append(s_{ig} + s_{cg})$
10:	$s_{ic} \leftarrow sim^{VL}(i, c)$ > image-context score
11:	$scores[i] \leftarrow S_{a}max() + s_{ic}$

5. Experiments & Results

Baseline:

- We compare the candidate image with the highest similarity to the full context.
- **Image Generation with Context Augmentation (Gen+Def):**
 - We compare the candidate image with the highest similarity to an ensemble of **images** generated from **translated** + augmented context.
- Language-Specific (LangSpec):
 - We use compare the candidate image with the highest similarity to the full context using language-specific (EN|IT|FA) models.
- **Translations with Context Augmentation (Tr+Def):**
 - We compare the candidate image with the highest similarity to the full translated + augmented context using English models.

Accuracy on Test Set

6. Error Analysis

- Context Augmentation helps with ambiguity:
 - Original Context: andromeda tree
 - Augmented Context: An andromeda tree is a Japanese tree with light-colored flowers and green leaves
 - **CLIP** needs help to understand nuanced meaning

7. Conclusion

- We find that context augmentation is a powerful tool in improving performance
- Applying the English-only CLIP model to automatically translated text, yields higher accuracy than language-specific CLIP to original languages.
- Standard SOTA WSD systems have difficulty disambiguating short contexts, and are not necessarily effective for V-WSD.

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Alberta Machine Intelligence Institute (Amii).