# Text Editing as Imitation Game Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, Zhouhan Lin ning.shi@ualberta.ca, {tangbin.tang,qiufu.yb,kaiyang.hlt}@alibaba-inc.com, yewen.pu@autodesk.com, fujie@baai.ac.cn, lin.zhouhan@gmail.com

#### Introduction

Text editing, such as grammatical error correction, arises naturally from imperfect textual data.

Two primary methods to solve text editing:

- End-to-end
- Sequence tagging (token-level action generation)





# **End-to-end**

Pros - the advantage of simplicity by giving direct input-output pairs Cons - can struggle in carrying out localized, specific fixes while keeping the rest of the sequence intact

## **Sequence Tagging**

Pros - appropriate when outputs highly overlap with inputs by assigning no-op (e.g., KEEP) Cons - action space is limited to token-level, such as deletion or insertion after a token



1 + 1 = 2

## **Imitation Game**

Our Markov Decision Process (MDP) is defined as follows.

State *S* - a set of text sequences

Action A - a set of action sequences

Transition matrix P - the probability that  $a_t$  leads  $s_t$  to  $s_{t+1}$ 

Environment & - to update state by  $s_{t+1} = \mathscr{E}(s_t, a_t)$ 

Reward function R - to calculate a reward for each action The formulation turns out to be a simplified  $M_{BC}$ =(S, A,  $\mathscr{E}$ ).



Our Contributions are summarized as follows.

- Frame text editing into an imitation game formally defined as an MDP, allowing the highest degrees of flexibility to design actions at the sequence level
- Involve Trajectory Generation (TG) to translate input-output data to state-action demonstrations for imitation learning
- Propose a corresponding Trajectory Augmentation (TA) technique to mitigate the distribution shift issue imitation learning often suffers from
- Introduce Dual Decoders (D2), a novel non-autoregressive decoder to boost imitation learning in terms of accuracy, efficiency, and robustness.
- The source code and datasets have been released to the public (please scan the QR codes at the bottom).

## **Trajectory Generation (TG)**

**Trajectory Augmentation (TA)** 

Q: how to convert conventional sequence-to-sequence data into state-to-action demonstrations?

A: dynamic programming (DP) to calculate the minimum edit distance given the edit metric and back trace the editing operation after that.

| Algorithm 1 Trajectory Generation (TG)                                                                                                                                                                            | Q: imita             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <b>Input:</b> Initial state $\mathbf{x}$ , goal state $\mathbf{y}$ , environment $\mathcal{E}$ , and edit metric $\mathbf{E}$ .<br><b>Output:</b> Trajectories $\tau$ .                                           | from dis<br>accumu   |
| 1: $\tau \leftarrow \emptyset$                                                                                                                                                                                    |                      |
| 2: $\mathbf{s} \leftarrow \mathbf{x}$<br>3: $ops \leftarrow DP(\mathbf{x}, \mathbf{y}, E)$<br>4: for $op \in ops$ do<br>5: $\mathbf{a} \leftarrow Action(op) \qquad \triangleright$ Translate operation to action | A: expain actively   |
| 6: $\tau \leftarrow \tau \cup [(\mathbf{s}, \mathbf{a})]$<br>7: $\mathbf{s} \leftarrow \mathcal{E}(\mathbf{s}, \mathbf{a})$                                                                                       | TA that              |
| 8: end for                                                                                                                                                                                                        | conquer              |
| 9: $\tau \leftarrow \tau \cup [(\mathbf{s}, \mathbf{a}_T)] \triangleright$ Append goal state and output action<br>10: return $\tau$                                                                               | actions <sup>-</sup> |

tribution shift and error lation. How to handle this?

nd the training set by exposing shifted states via utilizes the divide-andtechnique to drop out from demonstrations.

| tion loarning often suffere  | Algorithm ? Trainatory Augmentation (TA)                                                                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| unitedrilling olleri sullers | Argorithm 2 Trajectory Augmentation (TA)                                                                                                                            |
| tribution shift and error    | <b>Input:</b> States S, state $s_t$ , expert states S <sup>*</sup> , actions A, and environment $\mathcal{E}$ .                                                     |
| lation. How to handle this?  | <b>Output:</b> Augmented states <b>S</b> .                                                                                                                          |
|                              | 1: if $ A  > 1$ then                                                                                                                                                |
|                              | 2: $\mathbf{a}_t \leftarrow \mathbf{A}.\mathrm{pop}(0)$                                                                                                             |
| nd the training set by       | 3: $\mathbf{s}_{t+1} \leftarrow \mathcal{E}(\mathbf{s}_t, \mathbf{a}_t)$                                                                                            |
| avpaaing abiftad atataa via  | 4: $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_{t+1}, \mathbf{S}^*, \mathbf{A}, \mathcal{E}) \triangleright \mathrm{Execute\ action}$ |
| exposing snined states via   | 5: $\mathbf{A} \leftarrow \text{Update}(\mathbf{A}, \mathbf{s}_t, \mathbf{s}_{t+1})$                                                                                |
| itilizes the divide-and-     | 6: $\mathbf{S} \leftarrow \mathbf{S} \cup \mathrm{TA}(\mathbf{S}, \mathbf{s}_t, \mathbf{S}^*, \mathbf{A}, \mathcal{E}) $ $\triangleright$ Skip action               |
|                              | 7: else if $s_t \notin S^*$ then                                                                                                                                    |
| technique to drop out        | 8: $\mathbf{S} \leftarrow \mathbf{S} \cup [\mathbf{s}_t]$ $\triangleright$ Merge shifted state                                                                      |
| From domonstrations          | 9: end if                                                                                                                                                           |
|                              | 10: return S                                                                                                                                                        |

## **Dual Decoders (D2)**

The conventional autoregressive decoder (a) compared with the proposed non-autoregressive D2 (b) in which the linear layer aligns the sequence length dimension for the subsequent parallel decoding.



#### **Arithmetic Equation (AE) Benchmarks**

Arithmetic Operators Restoration (AOR), Arithmetic Equation Simplification (AES), and Arithmetic Equation Correction (AEC)

| <b>AOR</b> ( $N = 10, L = 5, D = 10$ K) |                         |              |                  | <b>AES</b> ( $N = 100$   | D, L = 5, D          | = 10K)           | <b>AEC</b> ( $N = 10, L = 5, D = 10$ K) |                  |                |                |  |
|-----------------------------------------|-------------------------|--------------|------------------|--------------------------|----------------------|------------------|-----------------------------------------|------------------|----------------|----------------|--|
| Train/Valid/Test Train TA               |                         | Traj. Len.   | Train/Valid/Test |                          | Train TA Traj. Le    |                  | Train/Val                               | d/Test Train TA  |                | Traj. Len.     |  |
| 7,000/1,500/1,50                        | 00 145,176              | 6            | 7,00             | 0/1,500/1,500            | 65,948               | 6                | 7,000/1,50                              | 0/1,500          | 19,764         | 4              |  |
| <b>Ferm</b>                             | <b>AOR</b> ( $N = 10$ , | L = 5, D = 2 | 10 <b>K</b> )    | <b>AES</b> ( $N = 100$   | ), $L = 5$ , $D =$   | = 10 <b>K</b> )  |                                         | AEC (1           | V = 10, L =    | 5, $D = 10$ K) |  |
| Source x                                | 36293                   |              |                  | 65 + ( 25 - 20 )         | - (64 + 32)          | + (83 - 24) =    | (-25+58)                                | - 2 * + 4        | 4 10 + 8 / 8 = | 8              |  |
| Farget y                                | - 3 - 6 / 2 + 9 =       | 3            |                  | 65 + 5 - 96 + 59         | $\theta = 33$        |                  |                                         | - 2 + 10         | * 8 / 8 = 8    |                |  |
| State $\mathbf{s}_t^*$                  | - 3 - 6 / 2 9 3         |              |                  | 65 + 5 - ( 64 + 2        | 32)+(83-2            | (24) = (-25 + 5) | 58)                                     | - 2 + <b>4</b> ( | 10 + 8 / 8 = 8 |                |  |
| Action $\mathbf{a}_t^*$                 | [POS_6, +]              |              |                  | [POS_4, POS_8            | 8, 96]               |                  |                                         | [DELE]           | ΓE, POS_3, P   | POS_3]         |  |
| Next State $\mathbf{s}_{t+1}^*$         | - 3 - 6 / 2 + 9 3       |              |                  | 65 + 5 - <b>96</b> + ( 8 | 83 - 24) = (-        | 25 + 58)         |                                         | - 2 + 10         | +8/8=8         |                |  |
| Shifted State $\mathbf{s}'_t$           | -3 - 6 / 29 = 3         |              |                  | 65 + 5 - ( 64 + 3        | 32) + <b>59</b> = (· | - 25 + 58 )      |                                         | - 2 + 4          | 10 * 8 / 8 = 8 |                |  |

| Method _                         | <b>AOR</b> $(N = 10, L = 5, D = 10K)$ <b>AES</b> $(N$ |                                                                                             |                                                                                       | <b>AES</b> $(N = 100, L = 5, D = 10K)$ <b>AEC</b> $(N = 10, L = 5, D = 10K)$ |                                                             |                                                                                        |                                                                                       | Design                                                            | Action Sequence                                   | Method                                         | Tok. Acc. %                                                     | Eq. Acc. %                                                                   |                                              |
|----------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|
|                                  | Tok. Acc. %                                           | Seq. Acc. %                                                                                 | Eq. Acc. %                                                                            | Tok. Acc. %                                                                  | Eq. Acc. %                                                  | Tok. Acc. %                                                                            | Seq. Acc. %                                                                           | Eq. Acc. %                                                        |                                                   |                                                | AR*<br>NAR*                                                     | $99.27 \pm 0.32$<br>99.51 + 0.13                                             | $93.57 \pm 2.91$<br>95.67 + 0.93             |
| End2end<br>Tagging<br>Recurrence | _<br>_<br>_                                           |                                                                                             | $29.33 \\ 51.40 \\ 58.53$                                                             | $84.60 \\ 87.00 \\ 98.63$                                                    | $25.20 \\ 36.67 \\ 87.73$                                   | $88.08 \\ 84.46 \\ 83.64$                                                              | $57.27 \\ 46.93 \\ 57.47$                                                             | $57.73 \\ 47.33 \\ 58.27$                                         | #1                                                | <pre>#1 [Pos.L, Pos.R, Tok.] _</pre>           | AR* +TA<br>NAR* +TA                                             | $99.44 \pm 0.27$ $99.58 \pm 0.15^{*}$                                        | $95.24 \pm 2.38$<br>$96.44 \pm 1.29$         |
| Recurrence*<br>AR                | $60.30 \pm 1.30 \\ 61.85 \pm 0.51$                    | $27.31 \pm 1.33$<br>$28.83 \pm 1.14$                                                        | $56.73 \pm 1.33$<br>$59.09 \pm 0.95$                                                  | $79.82 \pm 0.37$<br>$88.12 \pm 2.37$                                         | $22.28 \pm 0.52$<br>$37.05 \pm 6.57$                        | $82.32 \pm 0.56$<br>$82.61 \pm 0.53$                                                   | $41.72 \pm 0.74 \\ 45.81 \pm 0.36$                                                    | $42.13 \pm 0.75$<br>$46.31 \pm 0.31$                              | #2                                                | [Pos. <sub>L</sub> , Tok., Pos. <sub>R</sub> ] | AR*<br>NAR*                                                     | $99.08 \pm 0.93$<br>$99.50 \pm 0.27$                                         | $92.35 \pm 7.21$<br>$95.55 \pm 2.28$         |
| AR*<br>NAR<br>NAR*               | $62.51 \pm 0.62 \\59.72 \pm 0.70 \\62.81 \pm 0.89$    | $\begin{array}{c} {\bf 30.85 \pm 0.41} \\ {24.16 \pm 1.16} \\ {30.13 \pm 1.31} \end{array}$ | $egin{array}{c} 61.35 \pm 0.33 \ 51.64 \pm 1.97 \ {f 61.45} \pm {f 1.61} \end{array}$ | $99.27 \pm 0.32 \\83.87 \pm 1.60 \\99.51 \pm 0.13$                           | $93.57 \pm 2.91 \\29.49 \pm 2.51 \\\mathbf{95.67 \pm 0.93}$ | $egin{array}{r} 82.29 \pm 0.39 \ 80.28 \pm 0.76 \ 81.82 \pm 0.68 \end{array}$          | $egin{array}{r} 45.99 \pm 0.49 \ 44.91 \pm 1.71 \ {f 45.97 \pm 1.07} \end{array}$     | $46.35 \pm 0.52 \\ 45.40 \pm 1.78 \\ 46.43 \pm 1.10$              | #2                                                |                                                | AR* +TA<br>NAR* +TA                                             | $\begin{array}{c} 99.52 \pm 0.29 \\ 99.54 \pm \mathbf{0.20^{*}} \end{array}$ | $95.68 \pm 2.49$<br>$95.97 \pm 1.64^{\circ}$ |
| AR +TA<br>AR* +TA                | $62.35 \pm 0.61 \\ 62.58 \pm 0.63$                    | $32.28 \pm 0.67 \\ 33.01 \pm 1.31$                                                          | $63.56 \pm 1.06 \\ 65.73 \pm 1.38$                                                    | $\frac{88.05 \pm 1.20}{99.44 \pm 0.27}$                                      | $38.39 \pm 3.45 \\95.24 \pm 2.38$                           | $     \begin{array}{r} {\bf 83.94 \pm 0.42 \ast} \\ {\bf 83.39 \pm 0.74} \end{array} $ | $49.36 \pm 1.23 \\ 48.95 \pm 0.65$                                                    | $49.83 \pm 1.21$<br>$49.47 \pm 0.73$                              | #3 [Tok., Pos. <sub>L</sub> , Pos. <sub>R</sub> ] | AR*<br>NAR*                                    | $\begin{array}{c} 98.06 \pm 0.79 \\ 99.53 \pm 0.14 \end{array}$ | $83.79 \pm 6.25$<br>$95.99 \pm 0.81$                                         |                                              |
| NAR +TA<br>NAR* +TA              | $61.30 \pm 0.86$<br>$63.48 \pm 0.38^*$                | $32.04 \pm 1.99$<br>$34.23 \pm 0.92^*$                                                      | $63.75 \pm 2.08$<br>$67.13 \pm 0.99^*$                                                | $90.38 \pm 2.21$<br>$99.58 \pm 0.15^*$                                       | $47.91 \pm 8.18$<br>$96.44 \pm 1.29^*$                      | $81.36 \pm 0.40$<br>$82.70 \pm 0.42$                                                   | $\begin{array}{c} 48.01 \pm 1.07 \\ \textbf{49.64} \pm \textbf{0.59}^{*} \end{array}$ | $\begin{array}{c} 48.47 \pm 1.15 \\ 50.15 \pm 0.55^* \end{array}$ |                                                   |                                                | AR* +TA<br>NAR* +TA                                             | $98.43 \pm 0.49$<br>$99.61 \pm 0.06^*$                                       | $87.29 \pm 3.70$<br>$96.55 \pm 0.46^{\circ}$ |

(b)



@EMNLP2022

(a)