Revisit Systematic Generalization via Meaningful Learning Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, Zhouhan Lin

ning.shi@ualberta.ca, boxinw2@illinois.edu, {luyang.ww,eason.lxy}@alibaba-inc.com, lin.zhouhan@gmail.com

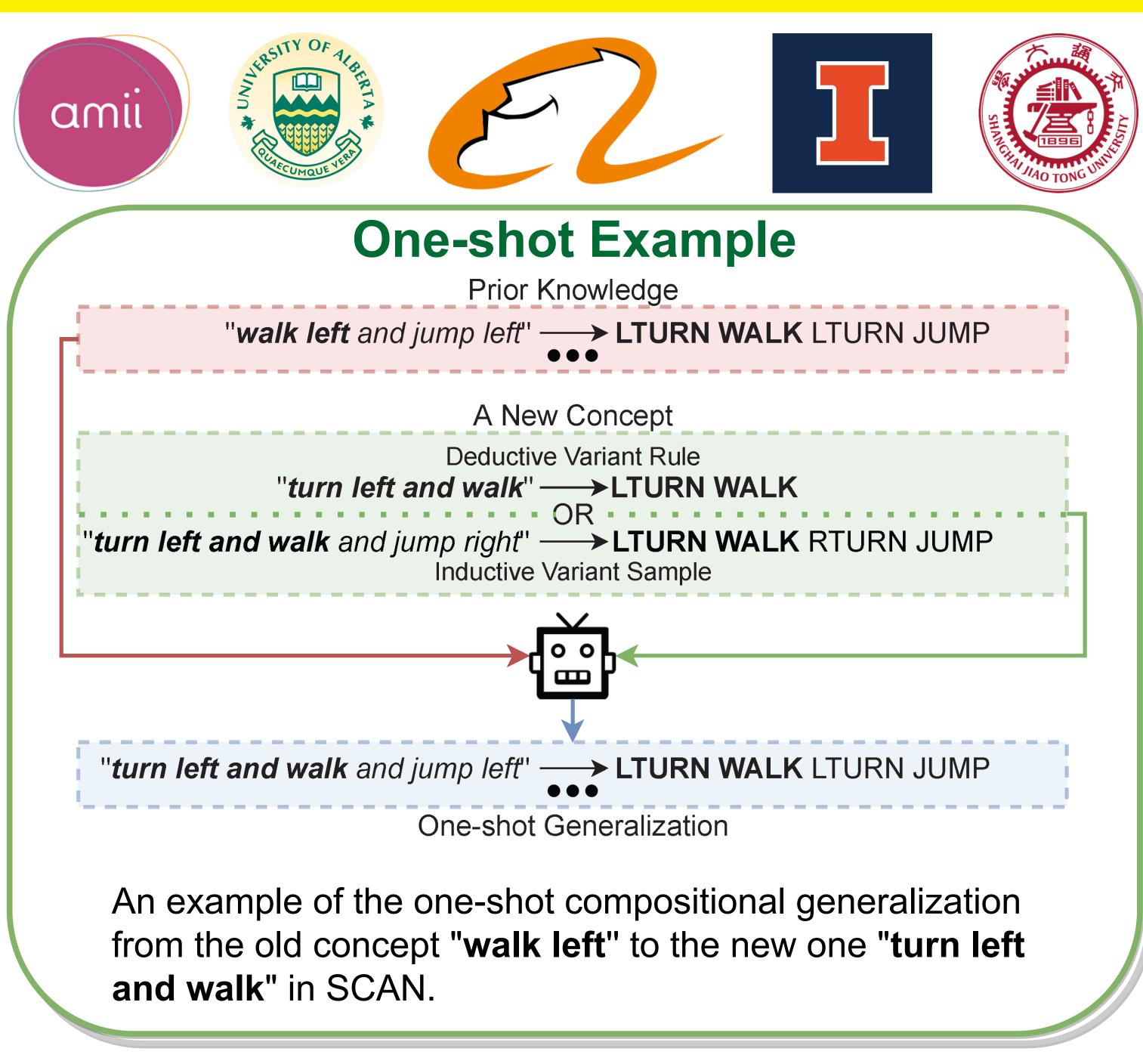
Introduction

Humans can systematically generalize to novel compositions of existing concepts. Recent studies argue that neural networks appear inherently ineffective in such cognitive capacity, leading to a *pessimistic* view and a lack of attention to *optimistic* results.

In contrast, the successful one-shot generalization in the turn-left experiment on the Simplified CommAI Navigation (SCAN) task reveals the potential of seq2seq recurrent networks in controlled environments (Lake and Baroni, 2018).

Question by Lake and Baroni (2018) on page 8:

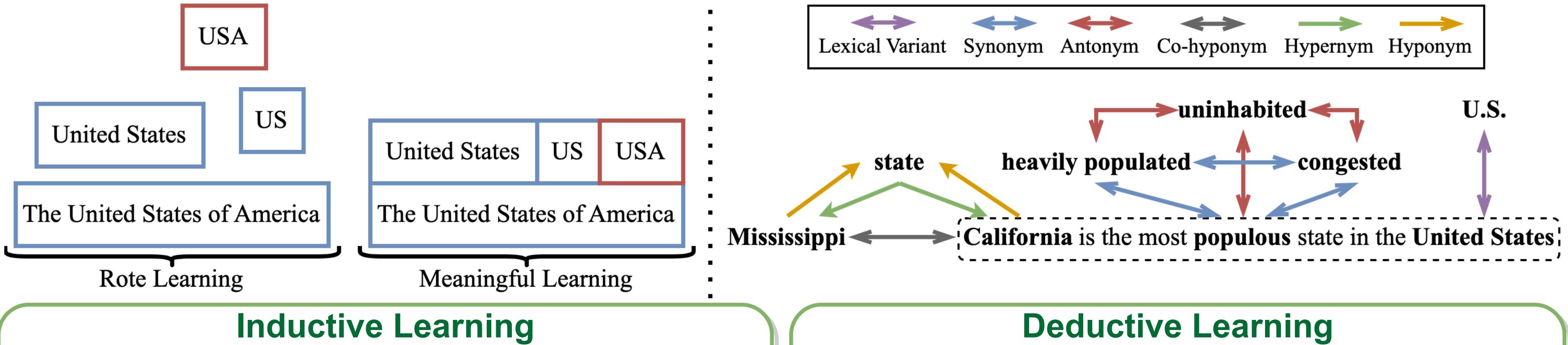
"What are, precisely, the generalization mechanisms that subtend the networks' success in these experiments?"



Meaningful Learning

In educational psychology, *meaningful learning* refers to learning new concepts by relating them to old ones (Ausubel, 1963).

On the contrary, *rote learning* stands for learning new concepts without the consideration of relationships.



Inductive learning is a *bottom-up* approach from the more specific to the more general. In grammar teaching, inductive learning is a rulediscovery approach starting with the presentation of specific examples from which a general rule can be inferred.

Deductive Learning, the opposite of inductive learning, is a *top-down* approach from the more general to the more specific. As a rule-driven approach, teaching in a deductive manner often begins with presenting a general rule followed by specific examples in practice where the rule is applied.

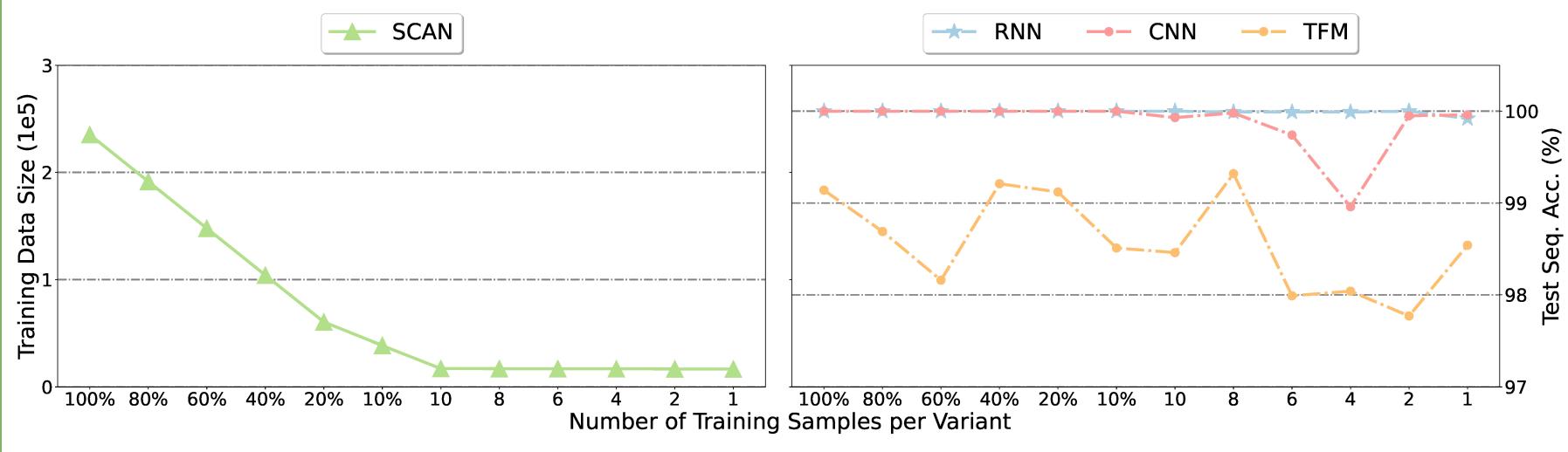
Data	Primitive	Variant	#Variants	Prompt	Data	Primitive	Semantic Links	Variant	Concept Rule		
CAN	•		10						Primitive Rule	Variant Rule	
SCAN	jump	jump_0	10	[concept] twice	_	jump	Lexical Variant	jump_0	$jump \rightarrow JUMP$	$jump_0 \rightarrow JUMP$	
GEO	new york city	houston city	39	how many people in [concept]	SCAN	look		look_0	$look \rightarrow LOOK$	$look_0 \rightarrow LOOK$	
	mississippi rivier	red rivier	0	how long is [concept]		run		run_0	$run \rightarrow \text{RUN}$	$run_0 \rightarrow \text{RUN}$	
			9			walk		walk_0	$walk \rightarrow WALK$	$walk_0 \rightarrow WALK$	
	dc	kansas	49	where is [concept]	GEO	new york city	Co-hyponym	houston city	<i>new york city</i> \rightarrow CITY_NAME	houston city \rightarrow CITY_NAME	
	dover	salem	8	what states capital is [concept]		mississippi rivier		red rivier	mississippi rivier \rightarrow RIVER_NAME	red rivier \rightarrow RIVER_NAME	
ADV						dc		kansas	$dc \rightarrow \text{STATE}_NAME$	$kansas \rightarrow \text{STATE}_NAME$	
	a history of american film	advanced ai techniques	5/424	who teaches [concept] ?		dover		salem	$dover \rightarrow CAPITAL_NAME$	$salem \rightarrow CAPITAL_NAME$	
	aaron magid	cargo	5/492		ADV	a history of american film	erican film	advanced ai techniques	a history of american film \rightarrow TOPIC	advanced ai techniques \rightarrow TOPIC	
	aaptis	survmeth	5/1720			aaron magid	Co-hyponym	cargo	aaron magid \rightarrow INSTRUCTOR	$cargo \rightarrow INSTRUCTOR$	
	*					aaptis	eo nyponym	survmeth	$aaptis \rightarrow \text{DEPARTMENT}$	$survmeth \rightarrow \text{DEPARTMENT}$	
	100	171	5/1895	can undergrads take [concept] ?		100		171	$100 \rightarrow \text{NUMBER}$	$171 \rightarrow \text{NUMBER}$	

Systematic Generalization

Setup - we treat concepts in the initial data set as primitives and generate variant samples and rules accordingly. Next, we mix them up and construct a seq2seq task after a random split. We repeatedly train and evaluate models but slowly decrease the number of times they see each variant until one-shot learning.

			IWSLT'14					IWSLT'15					
Model			En-De		De-En		En-Fr			Fr-En			
			BLEU	SacreBLEU	BLEU	SacreBLEU	BLEU S		SacreBLEU		BLEU	SacreBLE	
Baselines			• • • • •	• 4 00	20.10		•	0.6	10.00		0 7 0 (
LSTM (Luong et al., 2015)		24.98 28.95	24.88 28.85	30.18 35.24	32.62 37.60	38.06 41.82		42.93 46.41		37.34 40.45	39.36 42.61		
Transformer (Vaswani et al., 2017) Dynamic Conv. (Wu et al., 2019)		28.93			37.00	41.82		40.41		40.4 <i>3</i> 39.61	42.01		
•			21.37	27.20	55.55	55.51	10		10.02		57.01	11.12	
+Vocabulary Augmentation LSTM (Luong et al., 2015)			$25.35\uparrow_{0.37}$	$_{37}$ 25.38 $\uparrow_{0.50}$ 30.99 $\uparrow_{0.81}$		33.63↑ _{1.01} 38.32↑		210.26	6 _{0.26} 43.30↑ _{0.37}		$37.77_{0.43}$	39.83 ↑ _{0.4} ′	
Transformer (Vaswani et al., 2017)		$29.40\uparrow_{0.45}$		$35.72\uparrow_{0.48}$	$38.07^{+1.01}_{-0.47}$		$9^{+0.20}_{-0.37}$	46.68 ↑0		$41.04\uparrow_{0.59}$	$43.15\uparrow_{0.54}$		
Dynamic Conv. (Wu et al., 2019)		27.60 ^{+0.10}		33.62↑ _{0.29}	$36.00^{+0.11}_{-0.46}$			45.95 ↑ ₀		39.95 ↑ _{0.34}	41.86† _{0.44}		
			Geograp	eography			Advising						
Model	Train		Test		t	Train		n			Tes	Test	
	Token Acc.%	Seq. A	Acc.% T	oken Acc.%	Seq. Acc.%	Token Acc	.%	% Seq. Acc.%		Token Acc.%		Seq. Acc.9	
Baselines	5												
RNN	89.05	17	.39	69.81	9.68	92.22		3.6	64	60.41		6.11	
CNN	98.45	70	.74	78.44	55.91	99.74	8	81.			81.74	51.13	
TFM	99.45 84		.95	80.24	49.82	99.68		76.	76.90		78.51	29.67	
+Entity A	Augmentation												
RNN	87.47		.96	$72.39_{2.58}$	$15.05\uparrow_{5.37}$	88.82				$71.17_{10.76}$		$16.06_{9.95}$	
CNN				80.32	$60.93_{5.02}$	99.65					$50^{+}_{2.76}$	56.02 ⁺ 4.89	
TFM	99.30 85		.73	81.09↑ _{0.85}	$54.84_{5.02}$	99.57		86.94		84.26 ↑ _{5.75}		35.08 ↑ _{5.41}	
										_			
n a	rXiv								Г		Git	Hub	
	ajır		T 1. :				1						
			INIS	s work	was	suppo	orte	ed I	oy		l la s	PKI.	
	10. TO 1		Chir	ning La	h la	arnak		In			- Y	a de la c	
- 100			SIII		av, Le	annar	ЛС	, 111	C.,	. 1			
				and L	lihah	a Gro	IIN						
1822	**	1 1			าแมสม		up						
- C	والمراجع الم										- - - - - - - - - - -	Lille	
	ومطريها ومدتر				loalth	oxNL	ר				a la she s		

Results - we observe there is *hardly* a performance drop for three representative model structures.



Conclusion - This evidences that, with *semantic linking*, even canonical neural networks can generalize systematically to new concepts and compositions.