
Baseline (Linear Sequential Flow)

Recurrent Inference in Text Editing

Introduction
Many text editing tasks can be solved by multiple independent inference steps recurrently
A novel recurrent inference process, Recurrence, to tear the task into iterations of editing actions
Three text editing tasks                                                                                                                            

Arithmetic Operators Restoration (AOR)
Arithmetic Equation Simplification (AES)
Arithmetic Equation Correction (AEC)

Improvements over End2end and Tagging 

Ning	Shi
ning.shi@gatech.edu

Ziheng	Zeng
zzeng13@illinois.edu

Haotian	Zhang
haotian.zhang@learnable.ai

Yichen	Gong
yichen01.gong@horizon.ai Georgia Tech UIUC Learnable.ai Horizon Robotics

Recurrence
Programmer, a seq2seq model to determine the editing action given the
text state
Editing Action - [Operation, Position, Symbol]
Interpreter, a parameter-free function to excute the editing action

Input Programmer Interpreter Output
Data and Code

https://github.com/ShiningLab/Recurrent-Text-Editing

The number sequence [0; 2; 1; 4; 3; 5] is edited to [0; 1; 2; 3; 4; 5] via action a(1), [<swap>; pos 1], action
a(2), [<swap>; pos 3], and action a(3) = [<done>;<done>], like bubble sort.

Input OutputEncoder Decoder

Input OutputEncoder Decoder Realization

High-level illustration of End2end, Tagging, and Recurrence.

Analysis
N - the number of unique integers (control the
vocabulary size)
L - the number of integers in an equation (control
the sequence length)
D - the number of unique equations (control the
data size)

For easy settings, 
all three methods 
can achieve near-
perfect results, but
RecurrenceOnline 
converges the 
fastest (AES with
N = 10, L = 5, and
D = 10K.).

Data & Results

Offline Training - pairs of source text and target (text, tags, and immediate editing actions)
Online Training - pairs of source and target, as well as all the intermediate text states (editing actions)

End2end

Tagging


