Recurrent Inference in Text Editing Ning Shi Ziheng Zeng Haotian Zhang Yichen Gong ning.shi@gatech.edu zzeng13@illinois.edu haotian.zhang@learnable.ai yichen01.gong@horizon.ai Georgia Tech Learnable.ai Horizon Robotics UIUC Introduction Recurrence Many text editing tasks can be solved by multiple independent inference steps recurrently • Programmer, a seg2seg model to determine the editing action given the • A novel recurrent inference process, Recurrence, to tear the task into iterations of editing actions text state • Editing Action - [Operation, Position, Symbol] Three text editing tasks • Arithmetic Operators Restoration (AOR)

Input Text

Encode

Decode

Output Tex

End2end

Interpreter

Interpret

Terminat

Recurrence

e2e offlin

e2e onlin tag offline

tag_online rec offline

500 1000 1500 2000 2500 3000

Epochs

→ Interpreter Programmer -Input -012435 [<swap>, pos 1] [<swap>, pos 3] **Recurrence** Inference Interpret Programmer Interpreter (x)(a) (x) Input Text Action Encoder Decoder If Terminate 021435 012345 021435 The number sequence [0; 2; 1; 4; 3; 5] is edited to [0; 1; 2; 3; 4; 5] via action a(1), [<swap>; pos 1], action

a(2), [<swap>; pos 3], and action a(3) = [<done>;<done>], like bubble sort.

Data & Results

	AOR $(N = 10, L = 5)$			AES	AES $(N = 100, L = 5)$				AEC $(N = 10, L = 5)$		
Source	828	8 2 8 4 2			-33 + 25 + 75 - 60 == (30 - 23)				7 * 8 / 4 8 2 - = 6		
Target _{End2en}	- 8 d	-8 * 2 / 8 + 4 = = 2			-33 + 25 + 75 - 60 == 7				7 * 8 / 4 - 8 == 6		
Target	<ins< td=""><td colspan="3"><insert><keep><insert_*><keep></keep></insert_*></keep></insert></td><td colspan="4"><keep><keep><keep></keep></keep></keep></td><td colspan="3"><keep><keep><keep></keep></keep></keep></td></ins<>	<insert><keep><insert_*><keep></keep></insert_*></keep></insert>			<keep><keep><keep></keep></keep></keep>				<keep><keep><keep></keep></keep></keep>		
	<ins< td=""><td colspan="3"><insert_></insert_><keep><insert_+><keep></keep></insert_+></keep></td><td colspan="4"><keep><keep><keep><sub_7></sub_7></keep></keep></keep></td><td colspan="3"><keep><delete>_{<sub_8></sub_8>}</delete></keep></td></ins<>	<insert_></insert_> <keep><insert_+><keep></keep></insert_+></keep>			<keep><keep><keep><sub_7></sub_7></keep></keep></keep>				<keep><delete>_{<sub_8></sub_8>}</delete></keep>		
	<ins< td=""><td colspan="3"><insert_==><keep></keep></insert_==></td><td colspan="4"><delete><delete><delete></delete></delete></delete></td><td colspan="3"><keep><keep></keep></keep></td></ins<>	<insert_==><keep></keep></insert_==>			<delete><delete><delete></delete></delete></delete>				<keep><keep></keep></keep>		
Target _{Recurre}	ence <po< td=""><td colspan="3"><pos_0> -</pos_0></td><td colspan="4"><pos_9><pos_13>7</pos_13></pos_9></td><td colspan="3"><delete><pos_5><pos_5></pos_5></pos_5></delete></td></po<>	<pos_0> -</pos_0>			<pos_9><pos_13>7</pos_13></pos_9>				<delete><pos_5><pos_5></pos_5></pos_5></delete>		
		AOR $(N = 10, L = 5, D = 10K)$		AES $(N = 100, L = 5, D = 10K)$				AEC $(N = 10, L = 5, D = 10K)$			
Method	Training	#Epoch	Equ Acc. %	#Epoch	Token Acc.%	Seq Acc.%	#Epoch	Token Acc.%	Seq Acc.%	Equ Acc.%	
End2end	Offline	3352	26.47	5063	75.49	3.27	72144	87.78	54.67	55.13	
	Online	2640	29.33	7795	84.60	25.20	112482	88.08^{*}	57.27	57.73	
Tagging	Offline	1149	50.53	5223	90.10	43.80	135729	82.29	44.20	44.40	
	Online	2245	51.40	4520	87.00	36.67	112968	84.46	46.93	47.33	
Recurrence	Offline	1281	31.13	7603	94.92	62.07	203067	81.85	55.87	56.20	
	Online	1898	58.53*	7088	98.63 *	87.73 *	152982	83.64	57.47 *	58.27*	
Recurrence	Online Offline Online	2245 1281 1898	51.40 31.13 58.53 *	4520 7603 7088	87.00 94.92 98.63 *	36.67 62.07 87.73 *	112968 203067 152982	84.46 81.85 83.64	46.93 55.87 57.47 *	47.33 56.20 58.27 *	

Offline Training - pairs of source text and target (text, tags, and immediate editing actions) Online Training - pairs of source and target, as well as all the intermediate text states (editing actions)

Analysis

- N the number of unique integers (control the
- L the number of integers in an equation (control the sequence length)
- D the number of unique equations (control the data size)

For easy settings, e2e online all three methods can achieve near- > perfect results, but $\frac{1}{2}$ 0.6 Recurrence_{Online} converges the fastest (AES with N = 10, L = 5, andD = 10K.). vocabulary size)

→ Decoder -

 Arithmetic Equation Simplification (AES) Arithmetic Equation Correction (AEC) Improvements over End2end and Tagging

Encoder

▶ Encoder ⊢

(c) The impact of D -

Input

Input

ชมกวอห เ.o.5

Baseline (Linear Sequential Flow)

End2end

Tagging

High-level illustration of End2end, Tagging, and Recurrence.

→ Decoder

Data and Code

→ Output

→Realization → Output

https://github.com/ShiningLab/Recurrent-Text-Editing

Realization <

Tagging

1.0

• Interpreter, a parameter-free function to excute the editing action

