
An innovative and successful attempt to apply CLM to LST through a
formally defined task reduction.

A new state of the art on the LS21 benchmark by a large margin.

Scalability via data resources, model capacity, and RAG.

Lexical Substitution Task (LST) is to identify suitable replacements for a
target word while preserving the contextual meaning of the sentence.

Existing methods involve contextualized representations and sequence-
to-sequence generation; however, several limitations remain.
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Introduction

Limitations of Prior Work
Semantic Change:
Predicted substitutes may align well with the context but significantly
change the original meaning of the sentence.

Pipeline Approach:
(1) Manually defined heuristics and tuned thresholds 
(2) Extensive pre-processing and post-processing steps 
(3) Dependence on expert knowledge and external resources

Misalignment: Pre-training (language modeling) vs. Fine-tuning (LST)
Model Architecture (e.g., GeneSis):
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Methodology
We solve LST by reducing the problem to Word Prediction (WP), which
we solve via Causal Language Modelling (CLM).

Lexical Substitution, LexSub(S, wx, wy) := "the word wx can be
replaced by the word wy in the sentence S without altering its meaning"

WP(S, w) := "the word w has the same meaning as the masked word in
the sentence S"

Task Reduction from LexSub to WP:

We provide the first single-step, end-to-end generative solution for
LST that can also address existing limitations.

PromptSub: Lexical Substitution via Prompt-aware Fine-tuning

LS07 Results LS21 Results
We reproduced GeneSis+Rerank, which incorporates post-processing
steps to refine the results.

LexSub(S, wx, wy) ⇔  WP(S, wx) ∧ WP(S, wy)

Analysis
ExP retrieves WordNet synsets for retrieval-augmented generation
(RAG), resulting in lower loss, improved P@1, and earlier convergence.

Conclusion

github.com/ShiningLab/PromptSub

LST(S, wx) = y
Sentence (S) = "Let me begin again."; Target Word (wx) = "begin"
Substitutes (y) = ["start", "commence", "open", ...] 

LexSub("Let me begin again.", "begin", "start") = True

"Let me carry on again." vs. "Let me originate again." 

PromptSub+ augments the training set by incorporating the dev set.
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