Shining Lab

Ning Shi (石宁)

shininglab.png

Amii, UAlberta CS

Edmonton, Alberta, CA

I am a Ph.D. candidate in Computing Science at the University of Alberta, supervised by Prof. Grzegorz Kondrak and affiliated with the Alberta Machine Intelligence Institute (Amii). Before my doctoral studies, I worked as a Senior Algorithm Engineer at the Alibaba Artificial Intelligence Governance Laboratory (AAIG). I hold master’s degrees from the Georgia Institute of Technology, Syracuse University, and New York University.

My research interests lie in the broad area of computational linguistics, natural language processing, reinforcement learning, and their applications. In particular, from the perspective of human cognition, I am interested in the extent to which neural networks can do the same (or even better?) as humans to understand the world systematically.

I lead Shining Lab, where ideas shine ✨. For research collaborations or opportunities, please feel free to get in touch.

News

Jul 4, 2023 Please redirect to my latest personal homepage.

Selected Publications

2025

  1. UAlberta at SemEval-2025 Task 2: Prompting and Ensembling for Entity-Aware Translation
    Ning Shi, David Basil, Bradley Hauer, Noshin Nawal, Jai Riley, Daniela Teodorescu, John Zhang, and Grzegorz Kondrak
    In Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025), Jul 2025

2024

  1. Lexical Substitution as Causal Language Modeling
    Ning Shi, Bradley Hauer, and Grzegorz Kondrak
    In Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), Jun 2024
  2. UAlberta at SemEval-2024 Task 1: A Potpourri of Methods for Quantifying Multilingual Semantic Textual Relatedness and Similarity
    Ning Shi, Senyu Li, Guoqing Luo, Amirreza Mirzaei, Ali Rafiei, Jai Riley, Hadi Sheikhi, Mahvash Siavashpour, Mohammad Tavakoli, Bradley Hauer, and Grzegorz Kondrak
    In Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024), Jun 2024
  3. Paraphrase Identification via Textual Inference
    Ning Shi, Bradley Hauer, Jai Riley, and Grzegorz Kondrak
    In Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024), Jun 2024

2022

  1. Revisit Systematic Generalization via Meaningful Learning
    Ning Shi, Boxin Wang, Wei Wang, Xiangyu Liu, and Zhouhan Lin
    In Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, Dec 2022
  2. Text Editing as Imitation Game
    Ning Shi, Bin Tang, Bo Yuan, Longtao Huang, Yewen Pu, Jie Fu, and Zhouhan Lin
    In Findings of the Association for Computational Linguistics: EMNLP 2022, Dec 2022

2021

  1. Incorporating External POS Tagger for Punctuation Restoration
    Ning Shi, Wei Wang, Boxin Wang, Jinfeng Li, Xiangyu Liu, and Zhouhan Lin
    In Proc. Interspeech 2021, Dec 2021

2020

  1. Recurrent Inference in Text Editing
    Ning Shi, Ziheng Zeng, Haotian Zhang, and Yichen Gong
    In Findings of the Association for Computational Linguistics: EMNLP 2020, Nov 2020